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High speed data from Wide Area Measurement Systems (WAMS) with Phasor 

Measurement Units (PMU) enables real and non-real time monitoring and control of 

power systems. The information and communication infrastructure used in WAMS 

efficiently transports information but introduces cyber security vulnerabilities. 

Adversaries may exploit such vulnerabilities to create cyber-attacks against the electric 

power grid. Control centers need to be updated to be resilient not only to well-known 

power system contingencies but also to cyber-attacks. Therefore, a combined event and 

intrusion detection systems (EIDS) is required that can provide precise classification for 

optimal response. 

This dissertation describes a WAMS cyber-physical power system test bed that 

was developed to generate datasets and perform cyber-physical power system research 

related to cyber-physical system vulnerabilities, cyber-attack impact studies, and machine 

learning algorithms for EIDS. The test bed integrates WAMS components with a Real 

Time Digital Simulator (RTDS) with hardware in the loop (HIL) and includes various 
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sized power systems with a wide variety of implemented power system and cyber-attack 

scenarios. 

This work developed a novel data processing and compression method to address 

the WAMS big data problem. The State Tracking and Extraction Method (STEM) tracks 

system states from measurements and creates a compressed sequence of states for each 

observed scenario. Experiments showed STEM reduces data size significantly without 

losing key event information in the dataset that is useful to train EIDS and classify 

events. 

Two EIDS are proposed and evaluated in this dissertation. Non-Nested 

Generalized Exemplars (NNGE) is a rule based classifier that creates rules in the form of 

hyperrectangles to classify events. NNGE uses rule generalization to create a model that 

has high accuracy and fast classification time. Hoeffding adaptive trees (HAT) is a 

decision tree classifier and uses incremental learning which is suitable for data stream 

mining. HAT creates decision trees on the fly from limited number of instances, uses low 

memory, has fast evaluation time, and adapts to concept changes. The experiments 

showed NNGE and HAT with STEM make effective EIDS that have high classification 

accuracy, low false positives, low memory usage, and fast classification times. 
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INTRODUCTION 

1.1 Background 

The fundamental principle of power system operation is to maintain balance 

between generation and load demand in order to safely operate the system within 

acceptable stability and reliability limits. Due to increasing electricity demand and 

inadequate expansion of grid infrastructure, operators are forced to operate the power 

system close to the stability limit. The integration of renewable energy sources, 

deregulation, and multipoint communication between consumers and utilities has 

introduced more complexities that make power system operation very difficult to 

manage.  The traditional preventive controls based on a predefined set of credible 

contingencies may not be sufficient due to changing operating conditions. Hence, 

appropriate real time situational awareness and corrective action is required to prevent 

any unstable condition which could cause catastrophe [1]. 

From past experiences of large blackouts, it is evident that these events evolve 

and propagate faster than the sector's current ability to detect such events and respond 

with counter measures.  It is also known that large black outs start from single or multiple 

contingencies due to overloading, faults, and scheduled and emergency outages. One of 

the contributing factors in many power system failures is the lack of ability to visualize 

the real time state of the electric grid. Poor visibility across the power system may cause 
1 
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the operators to take incorrect control actions which in turn may lead to power system 

black outs [1]. Also, coordinated cyber-attacks may create N-k contingencies and cause 

cascading failures over large areas of operation. These attacks against power systems are 

not a myth but are credible threats as evidenced from attacks against industrial control 

systems in other critical infrastructure categories [2]. Due to the scale of impact areas, 

large outages can have tremendous socio-economic impact. For example, the economic 

impact due to the North American blackouts in 2003 was more than 10 billion US dollars 

[3]. 

Due to the nature of deregulated and interconnected systems spread over large 

geographical areas, and inefficient information exchange mechanisms between the 

neighboring utilities and Independent System Operators (ISO) or Regional Transmission 

Operators (RTO), proper system visibility is lacking. The slow sample rate of SCADA 

systems does not capture system dynamics properly, and, hence cannot provide true states 

of the systems in real time [1]. These key inadequacies are seen as one of the major 

factors in poor situational awareness in the control center. Wide Area Measurement 

Systems (WAMS) are based on synchrophasor measurements and were developed to 

address these inadequacies. A Phasor measurement synchronized with Universal Time 

Coordinated (UTC) time is called a synchrophasor. Significant efforts are being made to 

deploy WAMS across the world. WAMS consists of Phasor Measurement Units (PMU) 

and Phasor Data Concentrators (PDC) connected with high speed communication 

networks as shown in Figure 1.1. WAMS are heavily based on information technology 

(IT) infrastructure and communication takes place between various devices and entities 

that use many different protocols. The PMU is a fundamental component of WAMS and 

2 
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has brought a paradigm shift in monitoring and control of power systems because of its 

time synchronized high speed data streaming capabilities up to 120 samples per second 

with 1 microsecond time accuracy. 

1.2 Motivation 

The granularity of Synchrophasor data obtained from a PMU is very high. PMU 

sample rates provide greater visibility of power system events and enable the capture 

system dynamic details which were impossible before [1]. The applications of 

Synchrophasor technology focus on improving system monitoring and visualization for 

an operator’s improved situational awareness, enhancing the utilization of existing grid 

resources through efficient management, providing enhanced post event forensic 

analysis, and providing better tools to validate and estimate system parameters [4]. 

WAMS provide near real time monitoring and visualization capability of a grid, 

oscillation monitoring, frequency monitoring, voltage stability monitoring, event 

detection, and power system state estimation. WAMS is also useful for islanding 

detection and restoration as well as transmission congestion management [4]. 

Figure 1.1 Wide Area Measurement Systems (WAMS) 
3 
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The measurements obtained from power system WAMS are essential for 

evaluating and developing new algorithms and tools for power system operations. 

However, data associated with power system scenarios are difficult to obtain, especially 

when scenarios are very rare, such as larger black outs, complex cascading failures, and 

scenarios related to cyber-attacks. It is impractical to wait for such events to happen. 

Utilities can be a good source of such data. However, these data are often confidential 

and proprietary in nature, do not include all possible scenarios, and, are also difficult to 

understand. Researchers typically have to sign a strict non-disclosure agreement (NDA) 

to obtain data. Data unavailability is a significant challenge to the power energy society 

machine learning research community [5] [6]. Hence, an alternative data generation 

method is required. This data scarcity motivated us to create a WAMS test bed so that 

researchers can have datasets according to their requirements with greater flexibility in 

the scenarios. 

Since, WAMS use high speed communication networks, more efficient 

monitoring and control is possible. However, the integration of software applications, 

hardware, communication networks, and protocols introduce many vulnerabilities that 

could be potential insertion points for exploits. These vulnerabilities, if not addressed 

before deploying in the field, could bring catastrophic grid failure due to cyber-physical 

attacks. Attacks on control system confidentiality, integrity and availability are a prime 

concern. WAMS components may be targeted with different attacks. Malicious command 

injection and switching attacks [7] [8], denial of service (DoS) attacks, attacks against 

open ports and services, device access hijacking, man in the middle (MITM) attacks [9] 

[10], device setting changes, and attacks on HMI are some of the potential cyber-attacks 

4 
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against bulk power systems [11]. An attack against Iranian nuclear centrifuges is one of 

the many examples of a cyber-attack in which an attacker injected malware to modify 

control system behavior [2]. Power system cyber security has been overlooked in the past 

and has not been addressed adequately as cyber-attacks were not considered a major 

threat. The WAMS security concern motivated us to create a cyber-physical test bed 

which is capable of providing a platform for vulnerability assessment, attack modeling, 

and impact analysis.  

The dawn of the WAMS created significant buzz among the power utilities, ISOs, 

RTOs, power system experts, and researchers. Due to an abundance of the information 

provided by WAMS, new methods of analyzing system events and development of data 

driven tools are emerging. Traditional complex mathematical solution based tools can be 

complemented by the use of new machine learning based data mining techniques. The 

traditional batch processing data mining methods and data stream mining techniques can 

be used to extract useful information from a huge volume of data. These methods bring 

an opportunity to provide faster and better tools in the control center. Machine learning, 

data mining, also known as knowledge discovery from data (KDD), and pattern discovery 

techniques are suitable to learn and extract information from these 'Big Data' sets as 

defined by volume, velocity, and variety [12]. The sequence of events and patterns in 

heterogeneous datasets are key characteristics that can be used to discriminate natural 

events and cyber intrusions. Decision rules and trees obtained from classification and 

regression are important components of advanced situational awareness tools in real and 

non-real time. These methods can be used to develop effective event and intrusion 

detection systems (EIDS). However, the size of the data provided by WAMS poses 

5 
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significant challenges on data management and storage. Also, most traditional machine 

learning algorithms are designed to work with limited datasets. This limitation motivated 

us to explore new ways of data size reduction and compression techniques, and examine 

the efficacy of datasets by evaluating the performance of machine learning and data 

mining algorithms. 

In summary, WAMS have tremendous advantages, reliable tools are still not fully 

deployable and require more research and development work to ensure the efficacy of the 

tools and security of WAMS. However, current research on cyber-physical security of 

WAMS and data mining is constrained by a lack of proper cyber-physical test beds that 

realistically represent the power system during normal and abnormal conditions, provide 

real time hardware in the loop (HIL) simulation, and incorporate a large number of 

scenarios.  Additionally, lack of a test bed for vulnerability assessment of synchrophasor 

based WAMS, proper modeling of cyber-physical attacks against power systems and 

impact analysis, and lack of big datasets that are essential for testing machine learning 

based data mining techniques motivated us to develop the WAMS cyber-physical test bed 

and heterogeneous datasets required for power system engineers, cyber-security 

researchers, and data scientists. 

1.3 Objective 

1.3.1 Objective 1 

This work addresses constraints mentioned in the previous section. The first 

objective of the research work is to develop a WAMS cyber-physical test bed that 

facilitates a platform for real time simulation of power system and event analysis, relay 

testing and validation, wide area protection algorithm testing and validation, dataset and 
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application development, cyber-physical attack modeling and simulation, cyber-attack 

impact analysis and mitigation strategy development, vulnerability assessment and 

penetration testing, interoperability studies, digital forensic analysis, and EIDS 

development. This test bed enables a collaboration of cross disciplinary research from 

power system, cyber security, and data science. It is hypothesized that a real time digital 

simulator (RTDS) can be used to develop a WAMS based cyber-physical test bed in 

hardware in the loop (HIL) simulation which provides an excellent platform for 

integrating hardware relays, PMU, PDC, IT infrastructures, communication network 

protocols, and other I/O devices to create realistic WAMS in the laboratory environment. 

The WAMS architecture can be implemented to achieve the above mentioned goals. 

1.3.2 Objective 2 

The WAMS provides various information related to power system operation. The 

PMU provides voltage and current phasors, frequency, rate of change of frequency, 

sequence components, and other digital status information. Similarly, other components 

such as relays, control center computers, Snort engines, and other custom calculated 

information can be used in EIDS. As mentioned earlier, power system engineers, cyber 

security researchers, and data scientists working on data mining techniques require high 

volumes of data. The datasets should be random enough to test the performance of data 

mining algorithms. In addition to that, the test bed should be able to create a “Big Data” 

sets without human supervision. The second objective of this work is to create 

heterogeneous datasets that represent the various power system events such as faults, 

outages, and cyber-physical attacks. The datasets are created by integrating data from 

PMUs, relays, Energy Management Systems (EMS) logs, network transaction 
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information obtained from Snort logs, and other custom calculations. It is hypothesized 

that RTDS, MATLAB, Python script, AUTOIT scripts, PDC, PDC software, and 

OpenPDC can be used to automate the simulation, simulate attacks, randomize the 

scenarios with random fault locations and random load conditions, and finally integrate 

the data generated during the simulation. These datasets are critical to power system 

event detection, intrusion detection systems (IDS), EIDS, data stream mining, and 

machine learning methods for power systems. 

1.3.3 Objective 3 

The data management and processing is a challenging research area. WAMS 

generate a very high volume of data. A significant amount of data is redundant 

information. Proper data integration, cleaning, and transformation without losing 

information enables efficient algorithms development and testing. Many traditional batch 

processing methods in machine learning algorithms load the data into memory and then 

process it. If the data is too large it is impossible to load and process the data. The third 

objective of the work is to develop a novel method to transform data that is suitable for 

developing EIDS using sequential data mining techniques as well as to evaluate machine 

learning and data stream mining algorithms.  It is hypothesized that the state tracking and 

extraction method (STEM) can be used to quantize and compress the heterogeneous 

datasets to reduce the size of data while preserving original key events and patterns 

within the datasets, and automate the EIDS rule generation for large number of scenarios. 
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1.3.4 Objective 4 

A large problem in power system cyber-security is that the systems are not 

resilient to cyber-attacks. For decades power systems are designed to be resilient to 

contingencies. Cyber-attacks are a new cause of contingencies and power system control 

systems need to be updated to be resilient not only to previously known contingencies but 

to cyber-attacks as well. A combined event detector that can provide a precise 

classification of all types of contingencies is needed to enable algorithms to automate 

responses. Resilience requires first identifying the ongoing contingency and then 

executing a valid response. So, an event and intrusion detection systems (EIDS) must be 

able to classify a wide variety of scenarios with high accuracy, have low memory usage 

to enable scaling, and have classification times faster than synchrophasor data reporting 

times to enable faster response. 

Decision trees [13] [14], support vector machines [15] [16], and artificial neural 

networks [17] [18] have been used in various power system application studies. 

Traditional machine learning algorithms can be used in event classification and intrusion 

detection. Traditional machine learning algorithms are designed to work with small 

volumes of data and are sensitive to memory limitations. Hence, the data requires 

significant further processing to address this limitation. The fourth objective of this work 

is to develop an EIDS using a traditional batch processing machine learning algorithm 

with very high accuracy over wide range of scenarios, which handles large volume and 

velocity WAMS data, and has fast classification time. The hypothesis of this work is that 

nearest neighbor-like Non-Nested generalized exemplars (NNGE) algorithm with STEM 
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data processing technique is suitable to create an effective EIDS that fulfils these 

requirements. The results from experiments support this hypothesis. 

1.3.5 Objective 5 

One important advantage of WAMS is real time event reporting. Traditional 

machine learning requires training to build a model. Real time classification methods 

must adapt to changing conditions of the power system. Hence, incremental learning 

methods are required. Incremental learning methods address the memory issue that limit 

traditional batch processing methods scalability. Data stream mining techniques have 

been previously evaluated for power system event detection. Data stream mining takes 

the dynamic behavior of power systems into account by learning concepts from evolving 

data streams [19]. The fifth objective of this work is to develop a real time EIDS that uses 

stream data mining. The stream data mining EIDS will handle large datasets, with very 

high quality and accurate classification, have a small memory footprint, and have faster 

evaluation time than the current synchrophasor data rate. The hypothesis of this work is 

that the drift detection method (DDM) with Hoeffding Adaptive Trees (HAT) and 

adaptive windowing (ADWIN), hence HAT, can be used for data stream mining to create 

an EIDS for real time application which meets the aforementioned requirements. 

Evaluation of the HAT EIDS was performed by measuring accuracy of the classification, 

kappa statistic, evaluation time, and RAM-hours. The results from experiments support 

this hypothesis. 
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1.4 Contributions 

This work has 5 significant contributions which together provide a means for 

securing cyber physical power systems. 

1. A one of kind of WAMS based cyber physical test bed was developed 

with hardware in the loop simulation capability which provides a platform 

for power system engineers, cyber security researchers, and data scientist 

to evaluate the physical and network related artifacts of power system 

contingencies and cyber-attacks. 

2. Power system, cyber security, and data science researchers are starved for 

useful data which enables research. Heterogeneous datasets were created 

and shared with researchers for power system event detection, dimension 

reduction, data stream mining, EIDS, and machine learning methods for 

cyber-power event (a combination of cyber-attacks and power system 

events) detection. 

3. Approaches are needed to support efficient consumption of high velocity 

and high volume WAMS data in conjunction with data from other 

asynchronous sources. The STEM algorithm was developed to transform, 

compress, and reduce the size of the heterogeneous WAMS data while 

maintaining key patterns in the data to enable machine learning based 

classification. STEM provides compression ratio of up to 4178 to 1. 

STEM was successfully used with common path mining, NNGE, and 

HAT classifiers. 
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4. NNGE with STEM preprocessing was evaluated and shown to provide 

effective event and intrusion detection by leveraging high velocity and 

high volume heterogeneous WAMS data and providing precise 

classification of cyber-power events.  The EIDS was evaluated using data 

sets with 12 power system contingencies and 33 cyber-attacks.  The 

resulting EIDS performance benchmarks include 95% classification 

accuracy for binary and 93% for multiclass, less than 5% and 1.5% false 

positive rate for binary and multiclass respectively, and less than 0.3 

millisecond classification time.  

5. HAT with STEM preprocessing was evaluated and shown to provide 

effective event and intrusion detection with real time classification and 

continuous incremental learning. HAT with STEM preprocessing was 

evaluated using data sets with 12 power system contingencies and 33 

cyber-attacks. HAT benchmarks include over 96% classification 

accuracy for binary and 92% classification accuracy for multiclass, less 

than 9 × 10−7 average RAM-hours memory, and less than 0.1 millisecond 

evaluation time per instance. 

1.5 Dissertation outline 

This dissertation is organized as follows: 

 Chapter I: This chapter introduces problems and provides a brief 

background on power system operation. It also discusses the motivation of 

the research and provides specific objectives of the research. It 

summarizes the contributions of the research work. 
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 Chapter II: This chapter describes the WAMS test bed architecture, test 

bed scenarios and examples, and test bed applications in power system and 

cyber security domain. It also provides a dataset development process with 

some example datasets. 

 Chapter III: This chapter presents State Tracking and Extraction Method 

(STEM) for high volume WAMS heterogeneous data processing for 

cyber-physical power systems. Also, it presents results on patterns and 

data size reduction at different steps of STEM.  

 Chapter IV: This chapter presents the nearest neighbor like non-nested 

generalized exemplar (NNGE) algorithm. The implementation of NNGE 

to develop an effective EIDS for cyber-physical power system is discussed 

in this chapter. Several experiments to evaluate the performance of NNGE 

for EIDS and results are presented. 

 Chapter V: This chapter presents a real time EIDS which uses the 

Hoeffding Adaptive Tree (HAT) algorithm for data stream mining. HAT 

to develop real time EIDS for cyber-physical power system is discussed. 

Several experiments are presented to evaluate the suitability of HAT for 

real time EIDS and results are presented. 

 Chapter VI: This chapter is conclusion and discussion of future works. 

This chapter summarizes the methods and results obtained from various 

research work presented in this dissertation and possible future work to 

extend. 
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DEVELOPMENT OF WAMS CYBER-PHYSICAL TEST BED FOR POWER 

SYSTEM, CYBER SECURITY, AND DATA MINING 

2.1 Introduction  

Researchers from various cross disciplinary fields such as power system, data 

science, and cyber-power security working on synchrophasor based wide area 

measurement systems (WAMS) are facing two distinct challenges. First, the lack of a 

comprehensive test bed that integrates physical power systems with industry grade 

hardware, software, and WAMS standard protocols impedes the study of cyber security 

issues and vulnerabilities related to WAMS hardware, software, communication 

protocols, and consequences of exploitation of such vulnerabilities in power system 

operation. Second, the lack of appropriate synchrophasor data along with other 

information imposes challenges to develop and evaluate applications based on 

heterogeneous datasets using data mining algorithms. In this work, as a first contribution, 

a WAMS cyber-physical test bed with hardware in the loop (HIL) is developed by 

integrating physical power system emulated in RTDS, communication networks and 

protocols, control and monitoring devices, and software. The WAMS cyber-physical 

system integrates industry standard WAMS hardware, software, communication 

networks, and protocols. As second contribution, an automated simulation and control 

engine to randomize various cyber-physical power system events, and create large 
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heterogeneous datasets without human supervision is developed. The WAMS cyber-

physical test bed is capable of simulating various sizes of power systems and creating 

datasets without altering the hardware configuration. A WAMS architecture is presented 

to demonstrate the integration of various components. Also, a wide variety of cyber-

physical scenarios, dataset development process, selected results, specific and general test 

bed applications are presented. 

2.2 Motivation 

Power system blackouts are a result of sequences of events due to cascading 

failure [20]. From the past studies, it is known that a common initial cause of these large 

blackouts is a component failure which creates a chain reaction that leads to cascading 

failure. One of the prime reasons system operators were not able to take preventive and 

corrective control actions was due to lack of sufficient real time power system state 

information [20]. The initiating factors of  such component failures can be natural causes 

such as power system faults, weather related events, seismic events or due to human 

error, uncoordinated maintenance, and cyber-attacks [21]. The evolution of GPS enabled 

phasor measurement units (PMU) which are an essential component of wide area 

measurement systems (WAMS) improves the real time information systems and provides 

a paradigm shift in the area of power system monitoring, control and protection. PMUs 

with incorporated protective relaying functionalities provide unprecedented advantage in 

wide area visibility, monitoring, control and protection of the bulk power system; thus 

improves situational awareness and better control.  Though, these modern technologies 
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provide many advantages, the communication infrastructure and protocols used in 

monitoring power system states introduce many cyber-security issues. 

Cyber security issues in industrial control systems have long been discussed. 

Recent cyber-attacks on various industrial processes have provided some insight to the 

potential impact of an attack against critical infrastructures. The Aurora attack on a 

generator demonstrated that vulnerabilities in protection schemes can be exploited to 

cause serious damage to power system components [22] [23] [7]. Liu et al. [24] presented 

random false data injection attack and targeted false data injection attack. Bobba et al. 

[25] proposed a method to detect false data injection attack described by [24] by 

protecting key measurements and H matrix. Similarly, modeling and countermeasure of 

false data injection attack is presented in [9] [10]. A different kind of attack called 

switching attack is presented in [26] [27] [8]. A variable switching theory is used to create 

coordinated control switching attack where an attacker takes advantage of corrupted 

communication channel and control signal of associated switch. Wang et al. [11] 

presented a survey on cyber security in smart grid. The paper presents several aspects of 

cyber-attack against smart grid such as attack denial of service (DoS) attack that can 

happen to different communication layers. DoS attack can be performed on physical 

layer, MAC layer, Transport layer, network layer and application layers. Some of the 

attacks are jamming in substations, ARP spoofing, buffer flooding and traffic flooding. 

The aim of the attacker may be violating any one of the three security objectives: 

Confidentiality, Integrity and Availability. 

Various entities such as national labs, universities, research centers and utilities 

are focusing research on cyber security issues related to power grid vulnerabilities and 
16 
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attacks. Multiple test beds and tools have been developed to study vulnerabilities, 

existing threats and impacts on system. The National SCADA Test Bed at Idaho National 

Laboratory is used to discover and address vulnerabilities and threats that exist in energy 

delivery systems [28]. Sandia National Laboratory has developed the virtual control 

system environment (VCSE) to study cyber threats on control-system dependent 

infrastructures [29]. Hahn et al. have developed a cyber-physical security test bed used to 

model isolated and coordinated attacks and to study the cyber-physical impacts using 

system’s voltage and angle stability [30]. The virtual power system test bed and inter-test 

bed integration is used to evaluate the security performance of SCADA protocols and 

equipment [31]. The critical utility infrastructural resilience (CRUTIAL) test bed was 

developed to evaluate malicious threats on the grid control scenarios [32]. Finally, the 

SCADAsim test bed was developed to facilitate a simulation environment to test the 

security solutions and attacks on real devices and applications [33]. Most existing test 

beds focus on SCADA security and none of the existing test beds were developed to be 

used for research on Wide Area Measurement Systems (WAMS) security. Also, existing 

test beds do not cover a wide variety of cyber-power scenarios. There is a lack of a 

comprehensive cyber-physical test bed which provides a common platform to study 

various power system and cyber system interactions especially focusing on the emerging 

synchrophasor based WAMS. One of the contributions of the research work is 

development of WAMS cyber-physical test bed that include all essential components of a 

WAMS architecture and provides a platform to study cyber security issues on WAMS. 

WAMS measurements are envisioned as very useful information to create various 

monitoring, control, and decision making tools for better situational awareness. Machine 
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learning algorithms and data mining techniques can replace traditional complex math 

based decision support systems which take longer time to provide results. The data 

mining algorithms can be used in developing events and intrusion detection systems 

(EIDS). Various event detection and intrusion detection systems are proposed in the 

literature especially focusing on using communication network related data. The use of 

synchrophasor data as sensor in EIDS to date has been minimal. Dahal et al. studied the 

possibilities of application of only synchrophasor data for power system event detection 

to aid better situational awareness [34]. Classification and regression trees (CART) data 

mining tool is used to characterize the signature of impending island formation in [35]. 

Similarly, decision trees (DT) based data mining techniques are used to study oscillatory 

and voltage stability events, and dynamic security assessment is performed based on the 

ensemble based DTs [36] [37]. All of these research work focused on power system 

events only. Pan et al. used a data mining technique on heterogeneous datasets to create 

common paths which are used as rules in intrusion detection system (IDS) [38] for power 

system. 

These machine learning and data mining algorithms require a large amount of 

data to train and test algorithms. Robust event and intrusion detection will help mitigate 

potential cascading failures and cyber-attacks against power system infrastructure and 

maintain service availability, data confidentiality and integrity. The EIDS should be able 

to distinguish between the normal contingencies and control actions, and cyber-physical 

attacks against cyber-power critical components. However, authors in [39] point out there 

is lack of appropriated datasets for data mining researches. There are only handful of 

publicly available datasets and these datasets are relatively small in size. Power system 
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operation related datasets are not available. In addition, there is lack of data logs 

associated with a wide variety of events and hence, data related to these events are 

extremely difficult to obtain. Large blackouts, cascading failures, and cyber-attacks are 

very rare events and datasets related to such events almost impossible to obtain even from 

the utility. Also, datasets from utility are difficult to obtain due to propriety nature of the 

data and confidentiality issues, a non-disclosure agreement (NDA) is required in most 

cases. Since, these scenarios are impossible to implement in the real system, computer 

aided modeling and simulation is a better alternative to simulate and generate the 

datasets. Another contribution of the research work is development of big heterogeneous 

datasets with wide variety of cyber power scenarios to evaluate robustness of various data 

mining algorithms. 

This chapter presents a cyber-physical test bed that integrates industry standard 

software, hardware and communication protocols; and which is designed to simulate 

wide variety of power system faults, normal power system contingences, control actions, 

and cyber-attacks against power systems. Also, this chapter presents a process to create 

heterogeneous dataset from various data sources including PMU, relay event logs, energy 

management system (EMS) logs, and network transaction logs. The remainder of this 

chapter is organized as follows. Section 2.3 presents the WAMS cyber-physical test bed 

and its components. Section 2.4 presents the implemented cyber-power scenarios. Section 

2.5 presents the dataset development process, and section 2.6 presents test bed 

applications. 
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2.3 Development of WAMS cyber-physical test bed 

This section presents the implemented WAMS cyber-physical test bed. The test 

bed architecture is shown in Figure 2.1. The test bed consists of physical systems, 

communication infrastructures, and control and monitoring functions. The hardware, 

software, and communication protocols used in the test bed are industry standard the 

hardware in the loop (HIL) and software in the loop (SIL) implementation of relays, 

PMUs, PDC, protocols, and software facilitates cyber-attacks and real world power 

system scenarios such as faults and contingencies. The implementation of WAMS 

facilitates big heterogeneous dataset creation.    The WAMS cyber-physical test bed 

captures the essence of a wide area measurement systems (WAMS) and is small enough 

to be comprehensible in every detail. The test bed and datasets exhibit features of a real 

power system, yet the system fits into resources available in the lab in terms of hardware 

and software limitations. Each component is briefly presented here. 

2.3.1 Physical systems 

The physical power system is simulated using a real time digital simulator 

(RTDS). The RTDS is able to emulate electrical machines, controllers, transmission 

system components, and system load accurately and also provides a hardware in the loop 

(HIL) simulation environment. The integration of virtual, simulated, and actual hardware 

components in HIL in the test bed captures the essence of the entire power system 

operation. The size of the system is limited by the RTDS hardware, however, the 

modeled systems closely mimic real power system behaviors. 
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Figure 2.1 WAMS architecture 

As an example, the WAMS architecture that implements the WECC nine bus 

system is shown in Figure 2.1. Each modeled substation is equipped with either hardware 

relays or software relays or a manual breaker control mechanism for simulating 

contingencies and attacks. The location of hardware relays was chosen strategically to 

enable simulation of important cyber-attacks, control actions, and contingency scenarios. 

Also, each substation is equipped with PMU(s). 
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Figure 2.2 PMU assignment on the RTDS back plane on the left and RSCAD interface 
on the right 

One of the most important physical components of the WAMS test bed is PMUs 

that create an effective WAMS. The test bed consists of seven hardware PMUs from 

different vendors. The configuration of PMU and their placement can be changed within 

RSCAD modeling. Hence, the test bed provides moderate scalability and flexibility for 

PMU placement in the system. The test bed also consists of hardware relays. These PMU 

and relays are hardwired from RTDS back plane. The actual physical assignment of these 

seven PMUs on RTDS backplane is shown in Figure 2.2. The RTDS consists of two 

racks. Rack one incorporates four PMUs (SEL-421, GE D60-1, GE N60-1, and GE N60-
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2) and rack two incorporates three PMUs (GE D60-2, GE N60-3, and GE N60-4). Also, 

three physical over current and distance protection relays are incorporated in the system. 

The remaining required relays are modeled as software relays. In addition, the test bed 

consists of a hardware Phasor data concentrator (PDC) and all PMUs are configured to 

stream data to the PDC. 

Currently, the test bed can simulate 5 different power system models; a three 

generator four bus system [40], a modified two generator three bus system, a WECC nine 

bus system,  a two area power system [41], and the IEEE fourteen bus system. These 

power system models can be used for various applications discussed in test bed 

applications sections.  

The accuracy of simulation depends upon accurately modeling of a system. To 

ensure model accuracy, three validation steps were performed for each model. First, 

PowerWorld© and RSCAD solution were compared. Second, the output of the developed 

system was compared with the output presented in the literature whenever possible [40]. 

Finally, the values obtained during the simulation were compared with the PMU data. 

Simulated power system models were found to be accurate. 

Significant challenges to identify proper I/O interface were overcome and proper 

scaling of the PMU inputs are calculated so that the RTDS I/O output signal level is not 

over saturated. The scaling is calculated following guidelines provided from RTDS [42] 

and fine-tuned manually. Validation of Phasor quantities during steady state and dynamic 

condition was achieved by comparing signals from RTDS runtime windows and PMU 

measurements. The waveform shown in Figure 2.3 is a phase A bus voltage measured by 

PMU (blue line) and RTDS (red line) during the single line (phase A) to ground fault on 
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a transmission line. The waveforms are found to be close to identical as shown in Figure 

2.3. 

Figure 2.3 Comparison of voltage measured by RTDS and a PMU 

2.3.2 Communication infrastructure 

The communication infrastructure in the test bed includes a physical network, 

communication protocols used for transporting measurements, and control signals from 

device to device and between control centers and substations. The RTDS, PMUs, PDC, 

relays, Snort engine, OpenPDC, attacker PC, and historian are connected via a network 

switch which supports copper and fiber optic connections. RTDS and other substation 

devices such as relays and PMU communicate using various network protocols including 

MODBUS, Telnet, TFTP, DNP3, IEC 61850, and IEEE C37.118. The main 

communication protocol used for wide area based monitoring system is IEEE C37.118. 

MODBUS and Telnet are used to adjust device configuration and settings [43]. 
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2.3.3 Monitoring and control applications 

The test bed monitoring and control components include hardware PMUs, PDC, 

and relays, a data processing engine, and industry standard software. The relays, PMUs, 

and PDC setting are configured and system status is monitored using software packages 

from General Electric (GE) and Schweitzer Engineering Laboratories (SEL). Wireshark 

and Snort are used as network monitoring and analysis tools in the test bed. The PMUs 

are configured to stream synchrophasor data to a GE PDC with data rates up to 120 

samples per second. The test bed includes both a hardware and software PDC. A GE 

hardware PDC congregates measurements from each PMU according to time stamps, 

extrapolates for missing and corrupted values, and forwards concatenated measurements 

to the historian. Open source software PDC called OpenPDC collects synchrophasor data 

from hardware PDC. The dataset development process is presented in section 2.5 in 

detail. 

At the substation level, local control is employed using a hardware-in-the-loop 

(HIL) configuration using relays. Over current and distance protection relays are 

implemented to control the breakers for faults and other disturbances in the system. 

Hence, the test bed incorporates centralized and local controls with industry standard 

software and hardware to simulate the system, collect measurements, collect device status 

from field devices, forward operator commands to field devices, and manage historic 

data. 
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2.4 Test bed scenarios 

2.4.1 Power system faults, contingencies, and control actions 

Symmetric and unsymmetrical faults in a power system are considered as the 

examples of disturbances. A power system fault is a condition where the system voltage, 

current and frequency are abnormal. Typically, single line to ground (1LG) faults (70%), 

double line to ground (2LG) faults (10%), three lines to ground (3LG) faults (5%), and 

line to line (LL) faults (15%) represent greater than 95% of faults in a power system [44]. 

In this work, phase-a-to-ground fault for 1LG faults, phase-a-b-to-ground faults for 2LG 

faults, phase a-b-c-to-ground fault for (3LG) faults, and phase-a-to-b line to line fault for 

LL faults are simulated. Coordinated distance protection schemes is implemented using 

hardware relays in HIL environment. Each relay provides primary protection up to 80% 

of the line (Zone 1 protection) and backup protection (Zone 2 protection) up to 150% of 

the line. The trip time for Zone 1 protection is set to instantaneous while the trip time for 

the Zone 2 protection is set to 20 cycles. The details of the protection scheme 

implementation can be found in [45] 

The dynamic contingency analysis re-defines the traditional contingency analysis 

techniques and takes into account of the protection equipment operation in real time. The 

dynamic contingency analysis is simulated by opening the breakers in the system and the 

impact of these operations on the system will be evaluated for security analysis [46]. 

These breaker operations may be simulated due to protection device actions, manual 

operations, and cyber-attacks. Since, the developed test bed is equipped with relays in 

HIL environment, realistic relay operation and breaking operation during faults and other 

abnormal operating condition is possible. Similarly, the power system models are 
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equipped with manual switches and attack scripts, manual breaker operation and cyber-

attacks initiated breaker operation is achieved. 

Currently the test bed is capable of simulating generator loss, change of generator 

output, transmission line in and out of service, and load change or loss. The 

aforementioned contingencies can be simulated singularly to create N-1 scenarios and 

combinations of the contingencies can be simulated to create N-K scenarios in real time. 

Table 2.1 summarizes the scenarios simulated in the test bed. 

Table 2.1 Power system contingencies and control actions 

Scenarios Sub-categories 
Shunt faults Single line to ground faults 

Line to line faults 
Line to line to ground faults 
Three phase faults 

Load variation Load can be changed dynamically 

Load loss and recovery Loads can be switched on and off 

Generator loss and 
recovery 

Circuit breaker can be switched on and off as 
schedule outage or attacks 

Transmission line loss or 
recovery 

CBs can be opened and closed as maintenance and 
attacks 

2.4.2 Cyber-power system attacks 

Power system attacks may originate from insiders, amateur hackers, political 

activists, criminal organizations, governments, and terrorists. Cyber-attacks may appear 

as a nuisance or may bring the system to collapse [47]. Attacks could be carried out by 

physically harming the system components, by exploiting weak security policies of 

premises such as substations, control centers, and transmission and distribution 
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infrastructures. Similarly, skilled attackers may take advantage of security flaws and 

vulnerabilities in software, devices, communication infrastructures, and protocols. 

Within the substation level there are several points where an attacker can craft 

attacks on data integrity and availability. The cyber-attacks may involve control 

command injection, response injection, and denial of service (DoS) attacks. The control 

command injection attack can be used to control the devices and change the 

configuration. The response injection attack consists of sensor data fabrication and data 

alteration. These types of attacks may cause false breaker operation, EMS application 

failure, system outage, false alarms, and cause system limit violations. In WAMS 

architectures, substation relays are vulnerable to command injection attacks and physical 

attacks. Also, PMUs in substations are vulnerable to network attacks. An attacker may 

craft attacks such as false response injection and denial of service (DoS). The attacker 

can target an individual PMU or relay. However, an intelligent attacker can create 

coordinated attacks on many relays and PMU simultaneously. 

Since, these intelligent electronic devices (IED) are connected to the control 

center or a higher level aggregator using high speed communication network, it is 

possible to create attacks on data integrity and availability. An attacker can inject 

commands which mimics the command from control center. Also, various response 

injection attacks are possible between phasor data concentrator (PDC) and control center. 

These types of attacks are even more dangerous as they affect large number of PMU 

streams. The impacts of such attacks are loss of services, cascading failures, complete or 

partial loss of visibility, and limited or skewed situational awareness. All the data 

integrity attacks affect various EMS applications such as state estimation and 
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contingency analysis which ultimately causes incorrect control actions. Figure 2.4 shows 

different possible attack points in WAMS. The attacks can be on physical system, 

between the sensor measurements, and applications. 

State 1
f1(V1 , θ1 , f, t)

State 2
f2(V2 , θ2 , f, t)

State m
fm(Vm , θm , f, t)

Physical 
Plant

X(t)

State 
Transitions

PMU1

PMU2

PMU3

PMUn

PDC Applications

WAMS

Figure 2.4 WAMS attack points 

The hardware in the loop (HIL) and software in the loop (SIL) setup in test bed is 

key to create command injection and man in the middle attacks. HIL and SIL provides 

key attack points and tools to create more realistic attacks. In this study, it is assumed that 

an attacker has penetrated into the substation. Hence, substation targeted attacks are 

considered. The test bed can simulate attacks from each of the aforementioned categories 

listed in Table 2.2.  
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Table 2.2 Cyber-physical attack scenarios 

Types of attacks Sub-categories 

Command  injection attacks Command injection to relay 
Aurora attack 

HMI/UI attacks Relay setting changes 
Disable relay 
Remote trip and reclose 

Man in the middle attacks Data corruption 
False data injection 
Replay attack 

Physical attacks Relay shutdown 
Connection changes 
UTC time vandalism 

Denial of service Data flooding 
MODBUS and IEEE C37.118 Protocol Mutation 

Command injection attacks are available to create contingencies.  Relays can be 

tripped by remote command injection attack. Relays from two vendors are available in 

the test bed. Attacks are available to remotely trip both types of relays. In both cases a 

network packet capture tool was used to capture a command which is used to remotely 

trip the relay. In the attack scenario these commands are replayed on the network from an 

attacker PC connected to the network switch.  Aurora attack is repeated command 

injection attack on relays to open critical breakers. 

Man-in-the middle (MITM) attacks can be used to emulate faults and 

contingencies. The MITM attacks alter power system measurements transmitted from 

field devices to control room systems.  Implemented MITM attacks include a false data 

injection attack which alters current and voltage Phasor and replay attacks which resend 

captured PMU frames from a previous period. Both of these attacks can be used to 

confuse an operator or automate algorithm monitoring the systems. Faults, generator loss, 
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load changes, and transmission line loss can be replayed. The SLG fault replay attack 

attempts to emulate a valid fault by altering system measurements to mimic a SLG fault 

followed by sending an illicit trip command from a compromised computer to relays at 

the ends of the transmission line 

Physical attacks may consist of relay shutdown, connection changes, UTC time 

vandalism, Insiders may also physically trip a relay from the face plate and change 

settings. 

HMI and UI attacks are provided to simulate invalid changes to relay settings. 

These relay settings changes include change setting parameter threshold and relay 

operating time values as well as disabling the relay completely. HMI and UI 

manipulation attacks are automated by an AutoIT script. Such attacks mimic effects of 

insiders taking illicit control actions and malware taking control of software systems to 

manipulate control devices. 

Finally, two varieties of DOS attacks are available. First, scripts are available to 

send high volumes of network traffic (floods) to a network target in attempt to 

overwhelm network processors and memory. Second, two Python based protocol 

mutation engines are available to send mutated packets. The first protocol mutation 

engine randomly flips bits in network packets. The second protocol mutation engine 

sends intelligently manipulated packets. 

Results from three cyber-attacks are described below as example demonstrations 

of test bed capabilities. Figure 2.5 shows the result of MITM attack in which an attacker 

randomly alters current Phasor in a PMU stream. The range of current for the normal 

operation in this case is between 200 and 550 Amps. The graph shows current values for 
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different load scenarios. From the time 21:12.6 to 21:30.1, the attacker is able to inject 

random current values. This attack is carried out between a PMU and PDC. The attack 

script is able to inject any random data or coordinated false data into the system. Any 

number of PMUs can be attacked in these scenarios. 

Figure 2.5 Man in the middle attack against PMU 4 

Figure 2.6 shows a PDC’s query response time while the device is subjected to a 

DOS attack with an increasing flood of network packets. The brown triangle shows the 

rate of transmitted packets, blue lines shows device response times, and red dots show 

response timeouts.  The flood causes a loss of communication which in turn leads to loss 

of system monitoring capability. 
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Figure 2.6 Denial of service response 

Figure 2.7 shows the result of an attack against the coordinated distance 

protection scheme in which an attacker takes control the relay’s control room client or 

HMI and changes a setting to disable the relay. Due to the setting change the relay does 

not operate for a severe fault. This type of attack can have significant impact on system 

protection if the fault duration in the system is longer than that shown in the figure. Some 

faults must be cleared within a pre-specified time to maintain generator synchronism and 

to avoid damage to system components such as transformers. 
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Figure 2.7 Relay operation failed during fault due to relay setting change 

2.5 Dataset development 

Especially, the data mining research community is facing challenges to obtained 

appropriate datasets for evaluating algorithms [19]. There are few publicly available 

repository sites where researchers can obtain datasets. However, power system related 

data are not available in such repositories [48] [5]. Also datasets related to scenarios such 

as cascading failure, large blackouts, and cyber-attacks are very rare and obtaining data 

related to such events is extremely difficult. 

Datasets should include contingencies, variety of faults, control actions, and 

cyber-attacks in a random order. Also, it should include random variation of load and 

location of the events. Data plays an important role to develop an effective EIDS that can 

be used to classify cyber-power events. Power system operation is very dynamic where 

scenarios are constantly evolving. The load variation, occurrence of disturbance and its 
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location, contingencies, control actions, and possible cyber-attacks are very random in 

real power system operation. EIDS must be robust to be able to distinguish wide variety 

of events. In order to ensure the robustness of the data mining methods, the algorithms 

should be evaluated with the datasets that includes random events which closely mimic 

real power system operations. 

The second requirement on datasets is that the test bed should be able to provide 

robust heterogeneous datasets that include synchrophasor measurements of physical 

system states, monitoring, control and protection devices logs, Control panel logs, and 

network transaction for various applications. The need of heterogeneous datasets in the 

context of development of EIDS is critical. Usually power system researchers do not 

require other than PMU measurements for event detection methodology development. 

For example, Dahal et al. evaluated various data mining algorithm using synchrophasor 

measurements only [34]. However, in EIDS other information are very important to 

distinguish whether particular event is natural power system event or the cyber induced 

incident. For example, if only synchrophasor measurements are considered to develop 

EIDS, it may not identify the difference between the real SLG fault and SLG fault reply 

attack because a PMU provides identical system state signature for both events as shown 

in Figure 2.8.  But if other information are incorporated in the datasets, this will provide 

additional fidelity to the detection system. A simulation control and data integration 

engine is developed to achieve the automated simulation control and create 

heterogeneous datasets with random scenarios which is presented in the next section. 
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Figure 2.8 Sequence of cyber-power events 

2.5.1 Simulation control and data integration engine 

Figure 2.9 shows the interaction between various elements in the simulation 

control and data integration engine. The AutoIT script is a master control which governs 

three sets of subtask scripts: attack scripts, MATLAB scripts, and control panel scripts. 

AutoIT master control schedules the random scenarios from these three categories. The 

attack scripts simulate the cyber-attacks. The MATLAB script simulates power system 

faults with variation in types of fault, fault location, fault duration, and fault resistance. 

The control panel scripts simulate contingencies such as transmission line loss (recovery), 

generator loss (recovery), and scheduled maintenance by opening and closing the circuit 

breakers. 
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Figure 2.9 Simulation control and data integration engine 

A second set of scripts collect data from OpenPDC, relay logs, Snort, and control 

panel. These scripts are used to create heterogeneous datasets. Synchrophasor data 

retrieving script translates synchrophasor data to Comma Separated Value (CSV) format. 

The EMS and control panel logs retrieving script, relay logs retrieval script, and snort 

retrieving script up samples the discrete event logs and aligns the data with corresponding 

timestamps. A master script merges all the datasets into one CSV file. Summary of 

dataset integration and development is shown in Figure 2.10. The datasets are defined as 

“heterogeneous datasets” because the source, format of the data, and rate of data stream 

are different. For example, a PMU and custom calculation engine provide continuous 

electrical measurement data at the rate of 120 samples per second. But, the control center, 

relays, snort engine provide event driven discrete data with variable rates. 
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Figure 2.10 Dataset integration and development 

2.5.2 Dataset examples 

A two generator, three bus system with two transmission lines with a variable 

load system was created by modifying a three generator four bus system [40]. This 

system was modified to meet the requirements of the proposed task that simulates a 

coordinated multi zone coordinated distance protection scheme. Figure 2.11 shows single 

line diagram (SLD) of the modeled system implemented on a real time digital simulator 

(RTDS) [42]. 

R1 R2 R3 R4

BR2 BR3BR1 BR4

G1 G2

L1 L2

LOAD
B1

B2

B3

Zone 1

Zone 2

Figure 2.11 Single line diagram of the power system 
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G1 and G2 provide the necessary power to balance load at bus B2. PMU 1-4 are 

embedded in relays R1-4 respectively and provide bus voltage and line current phasor. 

PMU 5 is placed at bus B2 and measures load current phasor. Relays R1 and R2 protect 

line L1 by opening breaker BR1 and BR2, and R3 and R4 protect line L2 by opening 

breakers BR3 and BR4. 

The primary dataset developed in the lab consists of 10,237 instances of scenarios 

randomly simulated among 41 cyber-power scenarios and defined as ‘dataset 1’. The size 

of the heterogeneous dataset is approximately 34.7 GB.  These datasets have used in 

various research studies [49] [38]. These scenarios consist of single line to ground SLG 

fault at variable locations in 1% increment from 10% to 90% on transmission line L1 and 

L2 (Q1-Q6), SLG fault replay attack on line L1 and L2 (Q7-Q12), line L1 and L2 

maintenance (Q13-Q14) that mimics the scenario when an operator remotely trips relays 

to open breaker at both ends of transmission lines,  command injection against single 

relay (Q15-Q18), command injection against two relays (Q19-Q20), primary protection 

single relay disabled attacks with SLG fault (Q21-Q30), single relay disabled attacks and 

line maintenance (Q31-Q34), two relay disabled attacks and fault (Q35-Q38), two relay 

disabled and line maintenance (Q39-Q40), and finally normal power system operation 

(Q41). The load is changed randomly from 200-400 MW. 

The relay command injection attack was used to create contingencies by sending 

trip commands to relays to open breakers at the end of transmission lines L1 and L2. The 

attack originates from a remote computer with a spoofed IP address. Only the SNORT 

network monitor detects the trip commands associated with this attack. Since the attacks 

originate from another computer, there will be no control panel logs as with a legitimate 
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line maintenance scenario. This attack mimics a legitimate line maintenance scenario. 

Versions of this attack targeted individual and pairs of relays. 

The single line to ground (SLG) fault replay attack is a combination of a man in 

the middle (MITM) attack and a command injection attack. For the SLG fault replay 

attack, the attacker emulates a valid fault by altering PMU measurements followed by an 

unauthorized trip command injection sent to relays to open breakers at the end of lines L1 

and L2. The measurement alteration is done between the PDC and historian computer 

using a python script and Ettercap. SLG fault replay attacks were performed at random 

locations on line L1 and L2. 

The disabled relay attack simulates the conditions in which settings of control 

devices are changed without authorization. The setting can be changed by insiders or 

malware taking control of software systems. A MODBUS/TCP command sent from an 

attacker’s computer modifies the relay settings to disable relays and prevent relays from 

operating during fault conditions and line maintenance. Individual and pairs of relays 

were disabled. 

Each scenario starts from a normal operation state, then the event occurs, and 

finally the system returns to normal operation. The scenarios are labeled with ‘Q’ 

followed by a number and list of the scenarios is presented in the appendix A. 
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Figure 2.12 Distribution of cases among the scenarios for dataset 1 

The distribution of the 10,237 instances is shown in Figure 2.12. Each bar 

represents the total number of cases in one scenario. 

Another dataset of size 38.3 GB was also created by adding additional scenarios 

and defined as ‘dataset 2’. The added scenarios include double line LL fault on line L1 

and L2 (Q102), double line to ground 2LG fault on line L1 and L2 (Q108), three phase to 

ground 3LG fault (Q114), and repeated command injection attack called ‘Aurora attack’ 

to relay R1 (Q119). Each fault was simulated at a random location in 1% increment from 

10 to 90% on transmission lines L1 and L2. The total number of scenarios in this dataset 

is 45. Each bar represents the number of cases in each scenario as shown in Figure 2.13. 

The total cases in this dataset is 11,715. 

41 



www.manaraa.com

 

 

 

 

 

  

  

 

 
 

Figure 2.13 Distribution of cases among the scenarios for dataset 2 

2.6 Test bed applications 

The test bed has been used to create datasets for a large number of research 

projects. These datasets have been used by researchers at Mississippi State University, 

Oak Ridge National Laboratory, and University of West Virginia. These use cases are 

described below.  

2.6.1 Evaluation of data processing method and development of event and 
intrusion detection systems (EIDS) 

The dataset described in section 2.5.3 was used to develop a data size reduction 

technique which is presented in Chapter 3 and is called the STEM algorithm. The STEM 

algorithm reduces the size of large heterogeneous power system data significantly while 
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maintaining key patterns in the data. Two datasets of size 34.7 GB and 38.3 were created 

with 41 and 45 cyber-power scenarios. 

Similarly, these datasets were used to evaluate classification accuracy of an EIDS 

built with the NNGE data mining algorithm. The NNGE based EIDS is presented in 

Chapter 4 in detail. 

Additionally, these datasets were used to evaluate an online EIDS which is based 

on Hoeffding Adaptive Trees (HAT). The details of the online EIDS is presented in 

Chapter 5. 

2.6.2 Synchrophasor data dimension reduction techniques 

The test bed was used to generate the datasets required to evaluate the 

dimensionality reduction of synchrophasor data using principle component analysis 

(PCA) [50]. A three bus four generator power system [51] based on [40] was used to 

create datasets which included 18 measurements from two PMUs. 

2.6.3 Data stream mining 

Researchers in [34] evaluated the performance of Hoeffding tree based data 

stream mining techniques for static and evolving data streams. The test bed was used to 

create synchrophasor datasets with various power system events to simulate concept drift 

in power systems [51]. 

2.6.4 Machine learning for power system disturbance and cyber-attack 
discrimination 

In [49], researchers explored the viability of traditional machine learning methods 

to classify power system disturbances and cyber-attacks. The test bed was used to create 
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datasets for algorithm evaluation. The datasets for this work included data from 

heterogeneous sources such as PMU measurements, apparent impedance seen by relays, 

Snort logs, relay logs, and Control panel logs. 

2.6.5 Dimension reduction using mutual information optimization 

Researchers in [34] presented a method to select the features of synchrophasor 

measurement based on mutual information. The test bed was used to create 

synchrophasor datasets to validate the developed method [51]. 

2.6.6 Common path mining for faults and cyber events in power system 

A data mining algorithm to mine common paths for fault and cyber events 

detection in power system was evaluated in [38]. The modified two generator three bus 

system test bed was used to simulate short circuit faults and command injection attacks 

which remotely trip relays. 

2.6.7 Hybrid intrusion detection systems using data mining technique 

A hybrid intrusion detection system for power system was evaluated using the 

datasets. In this study SLG faults, line maintenance, relay trip command injection attack, 

relay disable attack, SLG fault replay, and variants of all scenarios were simulated. In 

both cases, heterogeneous datasets were created from different sources such as PMU 

measurements, relay logs, snort logs, Control panel logs, and apparent impedance are 

used [38]. 
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2.6.8 Vulnerabilities assessment and impact study 

2.6.8.1 Vulnerability assessment 

The test bed was used to test WAMS devices for cybersecurity requirements 

conformance and test for vulnerabilities. The test bed was used to perform network 

congestion testing, denial of service testing, and protocol mutation testing [43]. The 

results of the tests were provided to the device vendor to allow them to create corrective 

actions [52] [53]. 

2.6.8.2 Impact study 

Also, the test bed was used to study the impacts of cyber-attacks against a power 

system. A continuous command injection attack known as the ‘Aurora attack’ was 

simulated using IEEE fourteen bus system. The impact of cyber-attack was evaluated 

based on the variation of torque produced by the generator and power swing during the 

attack [54]. 

Cascading failures usually consist of voltage collapse phenomena in which a 

sequence of events lead to an unacceptable voltage profile to a significant portion of the 

power system. Usually, voltage collapse occurs when there is deficiency of reactive 

power support and reactive power demand is not met [41]. 
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Figure 2.14 Three generator four bus system 

A voltage collapse scenario induced by a cyber-attack was demonstrated using the 

three generator four bus system shown in Figure 2.14. Initially, the system is stressed and 

is operating at maximum load condition at P= 400 MW and Q= 60 MVAr and all 

transmission lines except line L4 are operating at nearly 80 % of the capacity. All lines 

are identical and their capacity is assumed to be 175 MW. The voltage at load bus B2 was 

monitored using a PMU. Before the attack, the bus voltage was 0.962 PU which is within 

acceptable range. The common acceptable voltage range is 0.95-1.05 PU. Other 

monitored parameters are shown in the Table 2.3.  

Table 2.3 Active and reactive power generation and flow (in MW and MVAR) 

Scenario G1 [P, G2 [P, G3 [P, L1 [P, L2 [P, L3 [P, L4 [P, 
Q] Q] Q] Q], Q], Q] Q] 

Normal 137.7, 134.3, 134.4, 136.4, 134.2, 133.5, 1.14, 
12.11 19.96 11.97 16.51 12.95 16.49 11.43 

After an 205.9, 202.4, 0, 0 136.5, 202.3, 68.50, 68.99, 
attack 35.2 40.28 22.76 23.51 12.42 12.41 
After 397.7, 0, 0 0, 0 263.8, 0, 0 130.6, 130.7, 
line loss 237.6 110.6 36.66 36.68 
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A command injection attack was executed to open the generator breaker GB3. As 

the breaker opened, there was a brief voltage dip at the load bus as shown in the Figure 

2.15. Within a short period of time, the voltage recovered to an acceptable value. The 

load was picked up by generator G1 and G2. However, transmission line L2 was 

overloaded due to the redistribution of power after the loss of generator G3. BR3 and 

BR4 open due to the overloading after a short period of time. The loss of the heavily 

loaded long line (L2) causes additional loading on the remaining lines L1 and L4. The 

loss of generator G2 and G3 forced the remaining generator G1 to supply the power 

demand. The reactive power demand is not met by a single generator, in an absence of 

control schemes and load shedding, the system suffered from a voltage collapse. The load 

bus voltage never recovered after the loss of line L2 as shown in Figure 2.15. 

Figure 2.15 Cascading failure and voltage collapse due to a cyber-attack 
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2.7 Conclusion 

Many contemporary research projects on power system event detection, data 

mining, data stream mining, cyber security, and vulnerability assessment in power 

systems are hampered by a lack of a suitable cyber-physical test bed and time 

synchronized heterogeneous datasets from WAMS. This WAMS cyber-physical test bed 

captures the essence of a wide area measurement system (WAMS) and is small enough to 

be comprehensible in every detail. The test bed and datasets exhibit features of a real 

power system, yet the system fits into resources available in the lab in terms of hardware 

and software limitations. The WAMS cyber-physical test bed developed by integrating 

industry standard components mimics a scaled version of WAMS. The test bed provides 

platforms to implement various cyber-power event scenarios and create heterogeneous 

datasets required to develop event and intrusion detection systems (EIDS) and other data 

mining algorithm evaluation. The implemented scenarios include natural power system 

events, control actions, and cyber-attacks. The data integration and simulation control 

engine automated the random event simulation and created big data for data mining. The 

WAMS test bed contributed in many research areas and became a significant component 

in a number of publications. The test bed has been used for impact studies in power 

systems due to cyber-attacks [54], vulnerability assessment of WAMS [43], data mining 

using Synchrophasor data [50] [34], machine learning methods in power systems [49], 

and intrusion detection in power systems [38]. This test bed was also used in this research 

to develop a data processing method to reduce large heterogeneous data, evaluate 

traditional batch processing data mining algorithms, and a data stream mining algorithm. 
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In future work, the test bed can be extended to study the different causes of 

cascading failures due to single or multiple element failures, power system cyber-attack 

scenarios and power system resiliency against cascading failures. The test bed has 

potential application in wide area protection system (WAPS) development and validation, 

digital forensics and cyber-security analysis, risk assessment, and attack modeling and 

defense. Although the RTDS based test bed has various advantages, scalability is 

difficult to achieve. A different approach of simulation of large system is necessary. 

Distributed simulation and Thevenin method are two potential approaches to deal with 

scaling issues. 
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DATA PROCESSING FOR EVENT AND INTRUSION DETECTION SYSTEMS 

(EIDS) IN POWER SYSTEM 

3.1 Introduction 

EIDS use synchrophasor data combined with data from other heterogeneous 

sensors to detect cyber-attacks and classify events. Synchrophasor streams are high 

velocity data streams.  Training and classifying events using Synchrophasor data can 

require large amounts of memory. An example PMU which transmits 12 Phasor and 2 

digital status words will create 96 bytes per sample period.  At 120 samples per second a 

single PMU creates 11,520 bytes of data per second. Five hundred PMU spread across a 

system will create 19.3 gigabytes (GB) of data per hour and 463 GB in a day.  Traditional 

batch processing data mining techniques are sensitive to memory and large data sizes 

[55]. As such, the volume of synchrophasor data fused with data from other sensors 

needed for an EIDS can easily exhaust a learner or classifier’s available memory. 

Additionally, Phasor are real are or fixed point numbers which are treated as continuous 

by a learner and therefore lead to infinite state space. Hence, an effective data processing 

method is required to reduce the volume of data and limit the state space of during 

classifier training. This chapter presents a state tracking and extraction method (STEM) 

which uses sequential state tracking to reduce data volume and state space while 

maintaining key patterns needed for machine learning algorithms to classify events.  
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STEM allows the resolution of the data to be changed by changing the quantization 

interval. 

EIDS make use of sensor data obtained from a variety of sensor devices in 

different data formats.  The STEM algorithm consists of 5 steps. First, data is collected 

from the various sensors of interest to the EIDS. Second, sensor data from heterogeneous 

sensors is merged into a single file. Merging requires up-sampling of slower data streams 

to merge into data from the fastest sensor. Third, individual sensor measurements are 

quantized to reduce the state space. Fourth, each merged sample is mapped to a unique 

state. A state database is used to hold all unique states and determine if a new state has 

occurred. Fifth, the data is compressed by removing repeating states. The result of the 

STEM algorithm is a stream of nominalized states. 

For this work, the STEM algorithm was used to process heterogeneous dataset 

with features from multiple power system sensors. A typical logged event included 2000-

3000 samples and was labeled with the name of the event. The STEM algorithm reduced 

each event stream to a list of ordered system states and a label. A case study was used to 

evaluate the performance of the STEM algorithm. Two experiments were performed. The 

experiments varied the quantization ranges for measured attributes to demonstrate the 

ability of STEM to adjust output resolution while maintaining key patterns in the data. 

The first experiment used a low granularity quantization while the second experiment 

used high granularity quantization. The average compression ratio for the two 

experiments was 260 and 76 for the low and high granularity quantization respectively 

for the entire dataset from Chapter 3. The MATLAB visualization tool was used to show 

patterns in the datasets were preserved by the STEM process. 
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The chapter is organized as follows. Section 3.2 presents Literature review. 

Section 3.3 presents the STEM algorithm for data size reduction keeping original patterns 

as a key step in data processing. Section 3.4 presents case study to apply STEM in power 

systems. Section 3.5 presents results from evaluation of data processing techniques 

followed by a discussion and conclusion in section 3.6. 

3.2 Literature review 

Various data processing methods are used to handle synchrophasor data. One 

alternative to deal with the data size would be down sampling of the data. But, this 

method undermines the achievement and objectives of synchrophasor technology; and 

also results in significant loss of information [50]. Authors in [49] used heterogeneous 

datasets that were randomly sample at 1 % to reduce the data size. The impact of data 

size reduction on classification is not discussed. Another possible shortcoming of down 

sampling is the tendency to loose information from sensors whose data streaming rate is 

very slow and event driven. Unlike PMU measurements, information such as relay trip 

status, breaker status, Snort network transaction logs, and control center logs are 

infrequent but very important to identify cyber-power events. 

The open source project Hadoop has been used to handle very large 

synchrophasor data [56]. The MapReduce computational framework in Hadoop uses a 

batch based parallel approach. This method requires significant resources to parallelize 

the process and data storage. The Hadoop cluster installed at TVA uses 180 processor 

cores simultaneously for data mining and event detection. The STEM algorithm reduces 
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data size while maintaining critical patterns in the data. As such, STEM requires less 

computational and memory resources than a Hadoop based approach. 

Linear Discriminant Analysis (LDA) is a supervised dimension reduction method 

which reduces data dimensionality by maximizing the ratio of between-class distance to 

within-class distance. LDA has been applied to text retrieval, face recognition, and data 

classification [57]. The between-class distance to within-class distance are presented in 

scatter matrices. A key problem with the LDA method is the scatter matrices sometimes 

becomes singular. PCA and Singular Value Decomposition (SVD) are used to extend the 

LDA method to address the singularity problem. The scalability of these LDA extensions 

has been an issue since these methods require the entire data matrix to be available in 

memory. Hence, it is difficult to apply the LDA method for large datasets such as 

Synchrophasor and EIDS data. Ye et al. presented a sliding window based LDA which to 

reduce the dimensionality of streaming data [58]. With this method data which has passed 

out the sliding window is forgotten. However, this method is suitable for data stream 

mining but not suitable for offline and batch processing methods.  STEM can be used for 

offline, batch processing, and data stream mining methods. 

Recently, Principle Component Analysis (PCA) method was used to reduce the 

dimensionality of synchrophasor data [50] [59] [60] [61]. PCA transforms possibly 

correlated variables to linearly uncorrelated variables. Dahal et al. used PCA method for 

data stream mining. Dimensionality reduction methods based on mutual information were 

studied in [50]. Xie et al. presented studies on dimensionality reduction of synchrophasor 

data based on PCA. Xie's method was used to develop an online early event detection 

system which implements dimensionality reduction at training to extract important 
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features from large PMU data sets [59] [60]. Among the various methods found in 

literature, PCA seems the most appropriate for synchrophasor data. PCA based methods 

are typically applied to continuous data.  For the heterogeneous datasets which include 

both continuous and discrete data, PCA is not appropriate. Additionally, PCA is 

unsupervised and ignores class labels, hence PCA is not suitable for supervised 

classification problems especially multi-class classification problems [62]. Also, PCA is 

sensitive to differences in scales of input variables. Variables of different scales need 

preprocessing. Values should be grouped by common scale or adjusted to all have similar 

scales (convert from volts to kilovolts, etc.,) before using PCA. EIDS data is 

heterogeneous and includes continuous and discrete attribute which makes PCA 

inappropriate. Additionally, the STEM transformation maintains class labels and is 

therefore useful for supervised and unsupervised algorithms.  Finally, STEM is not 

sensitive to scale since variables are treated independently. 

3.3 State tracking and extraction method (STEM) 

The STEM algorithm takes as input raw data with both continuous and discrete 

data format. Input to the STEM algorithm may come from separate streams connected to 

sensors or input may come from separate files for each input attribute or feature.  STEM 

outputs list of states. The output can be a continuous stream of states or may be sub-lists 

of states associated with a particular labeled event.  STEM is designed to work with 

streams. Logged events have artifacts across a period of time and across multiple sensors.  

For offline analysis, a single event includes samples from each sensor for the duration of 

the event. For example, typical power system events studied for this work included 20 
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seconds of sensor data. All samples across that period include the same label. STEM 

converts multiple comma separate files, with columns for each measured attribute and 

rows for each sample, into a single ordered list of states and a label for each event.  

Algorithm: STEM 

Input: Raw data from power system for the scenario of interest 

Output: List of States 

Step 1: Collect Raw Data. Raw data consists of measurements and time stamps. 

Expressions 3.1-3.3 show 3 measurements and timestamps from 2 example sensors, s1 

and s2. Each sensor may measure a single item or multiple items and each sensor 

provides a time stamp. For example, s11 denotes the measurements from sensor s1 at 

timestamp 1; 𝑠2𝑎1.5 is a measurement from sensor s2 for item ‘a’ at timestamp 1.5. Many 

instances of raw data are needed for each scenario. All sensors must have a measurement 

at time 0. 

𝑠11 = (𝑠1𝑎1
, 𝑠1𝑏1

, … , 𝑡𝑠11
) (3.1) 

𝑠21.5 = (𝑠2𝑎1.5 , 𝑠2𝑏1.5 , … , 𝑡𝑠21.5
) (3.2) 

𝑠12 = (𝑠1𝑎2
, 𝑠1𝑏2

, … , 𝑡𝑠12
) (3.3) 

Step 2: Merge Raw Data. The various sensor data must be merged into a single 

database. Since each sensor may take measurements at different times the merged data 

must be time aligned. The highest frequency sensor is used as a baseline. Slower rate 

sensor data is merged into the baseline sensor’s log file. Measurements from slower 

sensors which are between timestamps of the baseline sensor are delayed to the next 
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baseline sensor timestamp.  Table 3.1 shows an example of merged raw data based on the 

input data from expressions 3.1-3.3. 

Table 3.1 Merged raw data 

Sample Sample Sample Sample Timestamp 

𝑠1𝑎0 𝑠1𝑏0 𝑠2𝑎0 𝑠2𝑎0 𝑡𝑠10 

𝑠1𝑎1 𝑠1𝑏1 𝑠2𝑎0 𝑠2𝑎0 𝑡𝑠11 

𝑠1𝑎2 𝑠1𝑏2 𝑠2𝑎1.5 𝑠2𝑎1.5 𝑡𝑠12 

Step 3: Quantize data. Data from sensors can take many forms; real numbers, 

integers, Boolean values, etc.  Data must be quantized to reduce state space. For sensors 

with real and integer values data can be quantized into numbered ranges. For example 

voltage and current can be quantized into low (0), medium (1), and high (2) ranges 

according to two thresholds r1 and r2. The choice of r1 and r2 requires expert knowledge. 

Expression 3.4 provides an example quantization mapping for measurements. 

0 𝑖𝑓 𝑠𝑖 ≤ 𝑟1 
𝑞(𝑠𝑖) = {1 𝑖𝑓 𝑟1 ≤ 𝑠𝑖 < 𝑟2 (3.4) 

2 𝑖𝑓 𝑠𝑖 ≥ 𝑟2 

Step 4: Map to states. A state is a set of merged and quantized sensor 

measurements and a time stamp. Expression 3.5 shows an example state. 

𝑆𝑗 = (𝑞(𝑠1𝑖), 𝑞(𝑠2𝑖), … , 𝑡𝑖) (3.5) 
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States are stored in a state database. Only unique states are stored in the database 

and the state index, j, is incremented for each unique state. The state database is common 

for all instances of all scenarios. 

After mapping to states an instance of a scenarios can be represented as an 

uncompressed list of states. Expression 3.6 shows an uncompressed list of states 

representing the kth instance of scenario U. 

𝑈𝑘 = (𝑆0, 𝑆0, 𝑆1, 𝑆2, … ) (3.6) 

Step 5: Compress data into state lists. The uncompressed lists are compressed by 

removing sequences of states that do not change leaving just one instance of that state. 

This step provides a compression which reduces memory usage and results in a tuple 

which represents all state transitions for the system. The state transitions correspond to 

events. The result of compression is a list of states which represents a single instance of a 

scenario. A path Pi is a list of observed system states arranged in temporal order 

according to their timestamps ordered by increasing time. 

𝐏𝑖 = (𝑆0, 𝑆1, 𝑆2, … , 𝑆𝑛) (3.7) 

Dynamic systems will have many paths for the same scenario due to minor 

variations in sampled data resulting from measurement inaccuracies and changes in the 

larger system. For example, power systems are large interconnected systems. Changes 

outside the monitored portion of the power system may lead to variability in observed 

measurements for the same scenario in the monitored portion of the power system. 
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3.4 Case Study: Applying STEM for a power system with heterogeneous data 
sources 

For the following case study the STEM algorithm was used to preprocess power 

system data from a diverse set of sensors.  Sensors included PMU, relay logs, control 

panel logs, and a network monitor called SNORT. The PMU provides mostly continuous 

data types and the other sensors provide discrete inputs.  In this section, each step of the 

STEM algorithm is discussed in relation to the power system case study.  Results include 

compression ratios and MATLAB visualizations to demonstrate event patterns are 

maintained after applying STEM. 

First an example is provided to demonstrate the STEM steps.  The first step, 

collection of raw data is not shown. Table 3.2 shows the output of the merged raw data 

step. Each row in Table 3.2 is a tuple with a set of sampled attributes, a time stamp, and a 

label. Notice the label stay the same across many rows. This is because each scenario 

takes approximately 15-20 seconds which corresponds to 2000-3000 samples. In Table 

3.2, the measurements are merged altogether from multiple sources and up sampled to 

120 samples per seconds. In Table 3.3, the attribute values are quantized into named 

ranges. In Table 3.4, each instance is mapped to state ID. Table 3.4 also includes the 

quantized values for each attribute. This is because some algorithms prefer input in the 

form of individual attribute measurements, while others will take state as the input. The 

instances at time stamp 𝑇0 and 𝑇1 represent the same state of the system, hence, are 

represented by same state ID.  In Table 3.5, the states are merged. For example, the 

instances from time stamp 𝑇0 and 𝑇1 from Table 3.4 are merged into a single instance in 

Table 3.5. Both compressed state IDs and compressed instances are kept in this step 

because compressed instances were used in NNGE and MOA in Chapter 4 and Chapter 5 
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respectively. Finally, Table 3.6 shows an example where each scenario is represented 

solely by a list of states.  This example shows STEM conversion for one case of two 

separate scenarios, Q1 and Q2. The datasets compressed includes hundreds of cases of 

each scenario. 

Table 3.2 Merged raw data from different sources 

V I S F Z R E Sn Time Class 
135.7 253.8 0 60.01 15 0 0 0 T0 Q1 
134.2 260.1 0 59.9 14.8 0 0 0 T1 Q1 
98.2 1300 1 59.1 0.75 1 0 0 T2 Q1 
. . . . . . . . . Q1 
. . . . . . . . . Q1 
135 252.8 0 60 15 0 0 0 . Q1 
135 252.8 0 60 15 0 0 0 . Q1 
135.7 253.8 0 60.01 15 0 0 0 . Q2 
134.2 260.1 0 59.9 14.8 0 0 0 . Q2 
77.4 1500 1 60.3 1.25 1 0 1 . Q2 
. . . . . . . . . Q2 
. . . . . . . . . Q2 
135 252.8 0 60.5 15 0 0 1 Tn-1 Q2 
135 252.8 0 60.5 15 0 0 0 Tn Q2 

Table 3.3 Quantization 

V I S F Z R E Sn Time Class 
Normal Normal No Normal Normal No No No T0 Q1 
Normal Normal NO Normal Normal No No No T1 Q1 
Low High Yes Low Zone 1 Yes No No T2 Q1 
. . . . . . . . . Q1 
. . . . . . . . . Q1 
Normal Normal No Normal Normal No No No . Q1 
Normal Normal No Normal Normal No No No . Q1 
Normal Normal No Normal Normal No No No . Q2 
Normal Normal No Normal Normal No No No . Q2 
Low High Yes Low Zone 1 Yes No Yes . Q2 
. . . . . . . . . Q2 
. . . . . . . . . Q2 
Normal Normal No Normal Normal No No No Tn-1 Q2 
Normal Normal No Normal Normal No No No Tn Q2 
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Table 3.4 Mapped to state ID 

V I S F Z R E Sn State Class 
Normal Normal No Normal Normal No No No S0 Q1 
Normal Normal NO Normal Normal No No No S0 Q1 
Low High Yes Low Zone 1 Yes No No S1 Q1 
. . . . . . . . S2 Q1 
. . . . . . . . . Q1 
Normal Normal No Normal Normal No No No S0 Q1 
Normal Normal No Normal Normal No No No S0 Q2 
Low High Yes Low Zone 1 Yes No Yes S4 Q2 
Low High Yes Low Zone 1 Yes No Yes S4 Q2 
. . . . . . . . S5 Q2 
Normal Normal No Normal Normal No No No S0 Q2 

Table 3.5 Compressed states 

V I S F Z R E Sn State Class 

Normal Normal No Normal Normal No No No S0 Q1 

Low High Yes Low Zone 1 Yes No No S1 Q1 

. . . . . . . . S2 Q1 

Normal Normal No Normal Normal No No No S0 Q1 

Normal Normal No Normal Normal No No No S0 Q2 

Low High Yes Low Zone 1 Yes No Yes S4 Q2 

. . . . . . . . S5 Q2 

Normal Normal No Normal Normal No No No S0 Q2 

Table 3.6 State lists 

State list Class Label 
S0, S1 S2 S3 .. Sm Q1 
S0, S1 S4 S6.. Sk Q2 
………… …….. 
S1 S8 S9.. Sl Qo 
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3.4.1 Collect raw data 

A PMU provides measurements of different electrical quantities as shown in 

Table 3.7 in numeric format. For this case study, each PMU provided 27 measurements.  

There are four PMUs.  

Table 3.7 Measurements from PMU, relay logs, control panel logs, and SNORT 

Measurements Source Number of 
measurements 

Data Type 

PMU Timestamp PMU 1 Continuous 
Voltage Phase angles Phase A, B, C PMU 3 x 4 = 12 Continuous 
Voltage  Magnitude Phase A, B, C PMU 3 x 4 = 12 Continuous 
Current Phase angle Phase A, B, C PMU 3 x 4 = 12 Continuous 
Current Magnitude Phase A, B, C PMU 3 x 4 = 12 Continuous 
Voltage Sequence angles Zero, 
Positive, Negative 

PMU 3 x 4 = 12 Continuous 

Voltage Sequence Magnitude Zero, 
Positive, Negative 

PMU 3 x 4 = 12 Continuous 

Current Sequence angles Zero, 
Positive, Negative 

PMU 3 x 4 = 12 Continuous 

Current Sequence Magnitude Zero, 
Positive, Negative 

PMU 3 x 4 = 12 Continuous 

Frequency PMU 1 x 4 = 4 Continuous 
Rate of change of frequency PMU 1 x 4 = 4 Continuous 
Apparent impedance Calculation 1 x 4 = 4 Continuous 
Breaker Status Relay Log 1 x 4 = 4 Discrete 
Operator Remote Trip Control 

Panel 
1 x 4 = 4 Discrete 

Detect Remote Trip Network Packet SNORT 1 x 4 = 4 Discrete 

Figures 3.1-3.3 show screenshots of actual PMU measurements and relay event 

logs obtained from the test bed. Figure 3.1 and 3.2 are taken from the OpenPDC user 

interface.  Figure 3.3 is a relay event log from the GE Entervista software used to monitor 

and control relays. 
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Figure 3.1 OpenPDC screenshot showing actual PMUs in the test bed 

Figure 3.2 Actual measurements from GE D60 
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Figure 3.3 Actual relay events with time stamps 

3.4.2 Merge raw data 

The measurement data from the PMU, relay logs, Snort logs, and Control panel 

logs were merged into a single file. The PMU measurements were measured at 120 

samples per second. The apparent impedance seen by relay was calculated by using PMU 

measurements at relay terminal [63]. Relay status, Snort logs, and Control panel logs are 

asynchronous. To merge the PMU measurements was chosen as a reference and the relay 

logs, Snort logs, and Control panel logs were up sampled prior to merging. 

3.4.3 Quantization 

Power systems are dynamic and the measurements from them system 

continuously change even while the system is in a normal operating state due to change 

in loads and other switching. State tracking is difficult for continuous raw data. To 

facilitate proper state tracking, measurements with large state space should be quantized 

in such a way that the quantization interval maintains important patterns in the data. The 
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deviation of these measurements from normal state depends upon the type of event. For 

example, during faults, current values for the faulted phase swing over a very large range 

and the voltage dips significantly. Also, the frequency of the system and impedance of 

the line change significantly. For transmission line and generator loss, frequency 

excursion is significant but voltage and current values do not change as much when 

compared to faulted scenarios. If changes in the measurements are large, even large 

quantization intervals can capture the event pattern but if the measurements change 

within the narrow range, smaller and more quantization intervals are necessary. So, 

domain expert knowledge is needed to create proper quantization intervals. Quantization 

depends upon the type of system and the desired goals of the EIDS. For the EIDS in this 

case study, it is necessary to distinguish power system disturbance events from cyber-

attacks which mimic these same events. 

In this study, each measurement was split into multiple quantization intervals. The 

quantization interval of each measurement is shown in the Table 3.8. Table 3.8 includes 

the name of the attribute, the name of each quantization interval, the enumeration used by 

the learner, and the range for each interval. For example, normal range of voltage is 

assumed to be between 0.95 and 1.05 PU. Below 0.95 PU is assumed to be low voltage 

and above 1.05 PU is assumed to be high voltage which is an abnormal condition. For the 

current values, over current protection setting guidelines are used for basic quantization 

[64]. The majority of events in this study are related to power system faults, so, voltage 

and current measurements swing over a wide range. 
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Table 3.8 Measurement quantization 

Data 
attribute 

Quantization 
Interval Name 

Quantization 
Interval 
Enumeration 

Range 

Voltage Low, Normal, 
High 

{0, 1, 2} (0-0.95), [0.95-1.05), 
[1.05-∞) 

Voltage 
relative 
angle 

Low, Normal, 
High 

{0, 1, 2} [(LT- Upper threshold 
(UT)), [LT- Upper 
threshold (UT)), [UT- ∞) 

Current Low, Normal, 
Warning, High 

{0, 1, 2, 3} (0- Lower Threshold (LT)), 
[LT- 2 ×Maximum load 
current (MLC)), [2 ×MLC-
Prefault current), 
[Prefault current - ∞ ] 

Frequency Low, Normal, 
High 

{0, 1, 2} (0-59.8 Hz), [59.8-60.2 
Hz), [60.2- ∞] 

Impedance Zone 1, Zone 2, 
Normal 

{0, 1, 2} (0-0.80 PU), [0.80-1.5), 
[1.5-∞] 

Positive 
Sequence 

Yes, No {1, 0} {non-zero, 0} 

Negative 
Sequence 

Yes, No {1, 0} {non-zero, 0} 

Zero 
Sequence 

Yes, No {1, 0} {non-zero, 0} 

Relay logs Trip, No trip {1, 0} {1, 0} 
Control 
panel logs 

Scheduled 
maintenance, No 
schedule 
maintenance 

{1, 0} {1, 0} 

SNORT Network 
transaction, No 
network 
transaction 

{1, 0} {1, 0} 

Frequency quantization is more complex. Choosing the quantization interval 

depends upon the interconnections and the type of control schemes. In the eastern 

interconnection under frequency load shedding starts at a threshold of 59.7 Hz. In 

ERCOT two frequency thresholds are used for load shedding. Load shedding 59.8 Hz and 
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at 59.7 Hz a second group of loads are defined shed [65]. For this study, 59.8 Hz was 

used as the threshold to define low frequency. No information was found on a high 

threshold. Therefore, high frequency was classified as above 60.2 Hz. 

The voltage relative angle is useful to detect power system stress. Developing 

quantization ranges for voltage relative angle requires significant study and depends upon 

many factors including distance between buses, amount of power transfer, and physical 

characteristics of the network [1]. For a given reference angle, there will be a voltage 

relative angle for all other PMUs. Each voltage relative angle will have a unique 

quantization range. For this work, voltage relative angle is not used.  Apparent impedance 

is categorized based on distance protection zone boundaries settings [64]. The apparent 

impedance significantly changes during faults, the zone boundaries can be used to define 

quantization intervals. This work used two distance zone protection. A quantization 

interval was created for each zone and a third interval defines the normal apparent 

impedance.  Voltage and current sequence components can be used to identify faults in 

the systems. In this study, sequence components where quantized into zero and non-zero 

intervals. The zero range represents the no fault case and the non-zero case occurs during 

a fault. Different combinations of sequence components take the non-zero range for 

different types of faults. The relay logs, control panel logs, and SNORT log entries are 

event driven.  Each has only binary values as they are used to identify whether a 

particular change occurred or not. 

Once quantization is completed, the raw data transforms from raw data to nominal 

data. The transformation of data into a nominal format with a reduced state space is 

suitable for various machine learning, data mining, and pattern discovery methods. 
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3.4.4 State mapping and compression 

Once each row of the dataset is quantized, each row is mapped to a state ID. 

Unique states are provided an ID and repeated states use the same ID as previous 

instances of that state. For the case study, each cyber-power event has 2000-3000 

instances (rows). After mapping each row will have an assigned state ID. Compression 

removes repeated states in a sequence. After compression each event is represented by a 

temporally ordered list of states and a label. 

After each row is assigned with state ID, in the next step, STEM sequentially 

captures only distinct states, compress states, and stores it in the database. In this way the 

data size is significantly reduced by intelligently pruning the repetitive states. 

3.5 Results: Evaluation of STEM algorithm 

This section presents the evaluation of STEM algorithm if it preserves the original 

pattern in the datasets. The results show the compression technique reduces the size of 

data significantly and retains events and patterns very well. Also, the results show that the 

variation in the quantization interval significantly changes the number of compressed 

states, data size, and fidelity of the attributes. 

3.5.1 Experiment 1 

The objective of this experiment was to demonstrate the ability of the STEM 

algorithm to compress data while maintaining key events (patterns) and to reduce the data 

size. The analysis of scenario cases presented here were obtained from dataset described 

in Chapter 2. The two generator three bus system with two transmission lines and one 

dynamic load was used to create the datasets. The transmission lines are protected with 
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four distance protection relays and power system measurements were obtained from four 

PMUs. 

In this experiment, the attributes are quantized using the quantization intervals in 

table 3.8. For this experiment, the scenario used was a SLG fault. The transmission line is 

protected by relays R1 and R2. The fault was simulated on 85% of the line from the 

perspective of relay R1. So, the fault falls within zone 2 of R1 and zone R2. Thus, R1 

operates with a time delay and R2 operates instantaneously. Both relays use an auto-

reclosing scheme.  The current and voltage plots shown for this experiment were 

measured by a PMU embedded in R1. Although, current and voltage were plotted for 

only PMU1, in the actual dataset there is data from three additional PMUs. 

MATLAB was used to provide ribbon plots showing current and voltage behavior 

before and after STEM compression. Figure 3.4, Figure 3.5, and Figure 3.6 show the 

three phase current plotted for raw, quantized, and compressed form. The X-axis presents 

the instance number, the Y-axis presents the attribute number (phase A, B, and C are 

attribute 1, 2, and 3 respectively), and the Z-axis presents the current measurements. In 

Figure 3.4, several events are noticeable in raw data. When the SLG fault occurs on phase 

A, the phase A current goes from around 200A to 1500A. Next, the relays trip and open 

their breakers which causes the current to go to zero. After a fixed time interval the relays 

reclose and the phase A current shows a small transient before finally returning to a 

normal current value. Phase B and Phase C were also affected by the fault. Three pole 

tripping and reclosing opens and closes all three lines. 
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Figure 3.4 Three phase current measurements from relay R1 

Figure 3.5 shows the current after quantization. The magnitude of the current 

values are quantized into four intervals. {Low, Normal, Warning, and High} which are 

mapped to {0, 1, 2, 3} respectively and is shown in Figure 3.5. The key events in the data 

are still present. The large jump in phase A current is still present. The small transients on 

phase B and phase C are lost because the quantization intervals were not designed to 

catch small transients. Smaller transients can be maintained by making smaller 

quantization intervals. But for event classification presented in Chapters 4 and 5 this 

quantization is acceptable because it keeps the key events in the data required for 

classification. 
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Figure 3.5 Three phase quantized current measurements 

Finally, Figure 3.6 shows compressed data. Figure 3.3 still shows a large increase 

in phase A current. The number of samples in Figure 3.6 is reduced from 2000 to 35 

which is a significant reduction. 

Figure 3.6 Three phase compressed current measurements 
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Figure 3.7 shows raw three phase voltage measurements for the same scenario. 

During the SLG fault on phase A, the phase A voltage dips significantly and recovers, 

with small transients, to normal as soon as relay clears the fault. The voltage dips 

momentarily during reclosing and eventually settles to a normal voltage. Phase B and C 

voltages also experience slight changes during the fault and reclosing. Figure 3.8 shows 

post quantization.  All key events are maintained. Quantization picks up slight dip on 

phase B and C voltage because both go below 0.95 PU. The voltage changes in only two 

category of normal and low. The compression plot in Figure 3.9 shows reduction in 

numbers of samples from 2000 to 35 but retains key events in the data. 

Figure 3.7 Three phase voltage raw measurements from relay R1 
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Figure 3.8 Three phase quantized voltage measurements 

Figure 3.9 Three phase compressed voltage 

Figure 3.10 shows the data logs from other sources, relay logs, control panel logs, 

and the Snort network monitor, for the same scenario. The sensors for all three types of 

data provide binary information. For relay logs they binary states indicate whether the 

relay is tripped (value 1 in the graph) and relay is not tripped (0 in the graph). Because 

the data from the sensor is already binary the raw and quantized data are the same. Since, 

the event is SLG fault on a line and the relays operate as expected, relays R1 and R2 
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show the presence of a trip signal. As the fault is at 85% of the line, R1 (blue) operated 

with a time delay while relay R2 (red) operated instantly. This relationship was 

maintained in the compressed data, as shown in Figure 3.11, although the number of 

samples were significantly reduced.  

Figure 3.10 Data logs from relays, control panel, and SNORT 

Figure 3.11 Compressed data logs 
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In conclusion, the STEM algorithm captures all of the key events needed for event 

classification.  

The analysis for Figures 3.4 -3.11 was performed for only one case among 10,237 

cases in the dataset. The STEM algorithm was used to process all 10,237 cases of 

scenarios in the Dataset 1 to demonstrate the compression ratio. The size of Dataset 1 is 

11.638 gigabyte (GB) and includes three phase voltages, three phase currents, apparent 

impedance, and frequency from all four PMUs and logs from all sources. Table 3.9 

shows an example of data compression ratio. In this study, compression ratio 𝐶𝑅1 was 

defined as the ratio of merged raw data size from Table 3.2 to the compressed state data 

size from Table 3.5. Compression ratio 𝐶𝑅2 was defined as the ratio of merged raw data 

size from Table 3.2 to the state lists from Table 3.6. Table 3.9 shows compression ratio 

by the type of scenario. Raw and compressed data of one example case of each scenario 

is shown in the table. Also 𝐶𝑅1 for combined dataset 1 is shown in the table.  

Different scenarios have different compression ratios because different scenarios 

have different numbers of events. If a scenarios represents a significant change in 

dynamics of the system, then the system goes through sequence of many state changes. In 

contrast, if a scenario does not change much from its normal operating range, it will have 

less states. Hence, the compressed data has variable data size for different scenarios. In 

addition, the size of raw data changes if the scenario run time changes which results in 

different data sizes.  

The total size of all state lists for all cases in Dataset 1 is 2921 kilobytes (KB) 

when saved as a comma separated file. The compression ratio 𝐶𝑅2 is 4178. The large 

compression ratio shows the final output of STEM algorithms is greatly compressed and 
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very useful for batch processing data mining techniques which require all data to be 

present in the memory when training and testing. 

Table 3.9 Comparison of compression ratio 

Data associated with on example 
case of each scenario 

Raw data 
size 

Compressed data 
size 

Compression ratio 
𝐶𝑅1 

SLG fault  (S1) 776 KB 6 KB 130 
Fault replay (S2) 1256 KB 6 KB 209 
Line maintenance (S3) 918 KB 4 KB 229 
Command injection to one relay 
(S4) 

941 KB 5 KB 188 

Command injection to two relays 
(S5) 

927 KB 4 KB 232 

Single relay disabled attack and 
fault (S6) 

1124 KB 6 KB 187 

Single relay disabled and line 
maintenance (S7) 

824 KB 6 KB 137 

Two relay disabled and line 
maintenance (S8) 

920 KB 2 KB 460 

Normal operation (S9) 2630 KB 3 KB 877 
Dataset 1 (S10) 11.638 

GB 
45.7 MB 260 

3.5.2 Experiment 2 

The objective of this experiment is to evaluate the impact of quantization interval 

changes. The same SLG fault scenario from experiment 1 was used for this experiment. 

The number of quantization intervals for current values was increased from 4 to 33 which 

equates to 50 Ampere current intervals. Also, the number of quantization intervals for 

voltage was increased from 3 to 15 where the intervals were evenly distributed across the 

range. The quantization intervals for all other attributes was kept same as in the first 

experiment.  Figure 3.12 and Figure 3.13 show quantized and compressed three phase 

current plots. Unlike experiment 1, the small transients during the fault and at reclosing 
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are present after quantization and compression. All other key events are also still present 

after quantization and compression. This shows that STEM is able to be tuned to capture 

events of different sizes.  

Figure 3.12 Quantized current with smaller quantization interval 

Figure 3.13 Compressed current with smaller quantization intervals 

Figure 3.14 and Figure 3.15 show three phase voltage measurements. Again, 

smaller quantization intervals result in the shape of the quantized plot being closer to the 
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raw measurement plot. The average compression ratio 𝐶𝑅1 for all cases in Dataset 1 

decreased as shown in Table 3.10.  The total 𝐶𝑅1 ratio decreased from 260 to 55. Hence, 

it can be concluded that STEM can be tuned to adjust fidelity to the original signal at the 

expense of compression ratio. Additionally, the user has the flexibility to adjust 

quantization intervals of individual measurements. 

Figure 3.14 Quantized voltage with smaller quantization intervals 

Figure 3.15 Compressed voltage with smaller quantization intervals 
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The smaller quantization intervals results more states in the final STEM output for 

each scenario. The number of states increased from 35 to 160 from experiment 1 to 

experiment 2. The size of all state lists derived from Dataset 1 for this experiment is 7796 

Kilobytes (KB). As such, compression ratio 𝐶𝑅2 decreased from 4178 to 1564. The 

increase in the number of quantization intervals had a significant effect on the 

compression ratios. However, the size of STEM output data is still suitable for data 

mining algorithms which are sensitive to memory resource constraints. 

Table 3.10 Comparison of compression ratio 

Data associated with on example 
case of each scenario 

Raw data 
size 

Compressed data 
size 

Compression ratio 
𝐶𝑅1 

SLG fault  (S1) 776 KB 22 KB 35 
Fault replay (S2) 1256 KB 11 KB 114 
Line maintenance (S3) 918 KB 34 KB 27 
Command injection to one relay 
(S4) 

941 KB 23 KB 41 

Command injection to two relays 
(S5) 

927 KB 14 KB 66 

Single relay disabled attack and 
fault (S6) 

1124 KB 16 KB 70 

Single relay disabled and line 
maintenance (S7) 

824 KB 41 KB 20 

Two relay disabled and line 
maintenance (S8) 

920 KB 4 KB 230 

Normal operation (S9) 2630 KB 58 KB 45 
Dataset 1 (S10) 11.638 

GB 
215 MB 55 
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Figure 3.16 Compression ratio for different scenario cases 
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Figure 3.17 Number of states for different scenario cases 

Figure 3.16 shows a comparison of compression ratio 𝐶𝑅1 between experiment 1 

and experiment 2. The normal operation scenario (S9) has a significant change on the 

𝐶𝑅1 compression ratio. This change is due to constantly changing loads which lead to 

changes in current and voltage measurements which are picked by the small quantization 
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intervals and results in more states. Figure 3.17 shows the number of states in different 

scenarios in experiment 1 and experiment 2. Normal operation (S9) has 451 states. 

3.6 Conclusion 

WAMS heterogeneous data represents big data with high volume, velocity, and 

variety and poses significant resource challenges when used with traditional batch 

processing data mining methods. Traditional batch processing methods require all data to 

be loaded in memory before building a training model and testing the training model. 

Hence, large WAMS heterogeneous data in size of terabytes does not fit into memory. 

So, appropriate data processing techniques are required to reduce the size in such a way 

that key patterns in the data are sustained and be useful for data mining pattern matching 

studies. In this chapter, a state tracking and extraction method (STEM) for heterogeneous 

datasets was developed to address the data size problem. STEM is useful to reduce the 

size of the data while maintaining key patterns in the dataset. The size, patterns, and 

number of states in the reduced data depends upon three variables, number of attributes, 

quantization intervals, and time window, in STEM. The STEM variables directly impact 

the size, pattern, and number of states in the reduced dataset. 

Since STEM keeps class labels throughout the process, data required for data 

mining techniques are available at any step of the process. As the performance of data 

mining techniques heavily depends on input data, data processing plays an important role 

and algorithms can take advantage of data transformations at any step of the algorithm. 

Data from different steps of STEM algorithm was used in evaluating NNGE and HAT in 

Chapter 4 and Chapter 5. 
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APPLYING THE NNGE ALGORITHM FOR CYBER-POWER EVENT 

CLASSIFICATION 

4.1 Introduction 

Timely and appropriate responses during power system disturbances and 

abnormal conditions heavily depend on situational awareness. Quick and informed 

responses have significant impacts on system reliability and security [1]. Current 

practices for power system event detection are insufficient to identify a wide variety of 

natural disturbances and cyber-attacks. These natural events and cyber-attacks can impact 

small regions and also create cascading failures and affect large areas if not detected and 

isolated properly. Data obtained from synchrophasor based Wide Area Measurement 

Systems (WAMS) can be combined with other asynchronous data sources to create event 

and intrusion detection systems (EIDS) to classify cyber-power events. An EIDS is a 

system that detects and classifies power system and cyber-attacks with high accuracy, 

low false positive rate and classification time, and requires low memory usage. This work 

introduces a novel methodology to create an effective EIDS using a state of the art data 

mining algorithm called Non-Nested Generalized Exemplars (NNGE) with input data 

preprocessed using the STEM algorithm presented in Chapter 3. Evaluation of NNGE 

with STEM resulted in classification accuracy of more than 90%, false positive rate with 
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less than 5%, and classification time much faster than the current synchrophasor data rate 

and low memory usage. 

Data mining is a useful tool to analyze power system data to discover patterns. 

Machine learning algorithms including Artificial Neural Networks (ANN) [17] [18], 

Decision Trees (DT) [13] [14], and rule based classifiers have been extensively used in 

power system applications [66]. One of the shortcomings of classical batch processing is 

that the data needs to be in memory to train the model. These algorithms may require 

more memory than available. Hence, batch processing algorithms do not scale well if the 

dataset is very large [67] such as is the case with power system WAMS data. However, 

the STEM algorithm can be used to preprocess power system WAMS data to reduce data 

size while maintaining critical patterns. Using raw WAMS data without preprocessing 

can cause rules or decision trees created to grow significantly especially in the case of a 

multi-class classification problem. The large number of rules can be memory intensive 

and consequently require more time to classify events. In the case of WAMS, where the 

volume, velocity, and variety of datasets are high, the classifier must have the capability 

to generalize rules and decision trees in such a way that it does not suffer from poor 

accuracy, slow speed, and memory issues. The requirements for effective EIDS is 

summarized in the Table 4.1. 
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Table 4.1 EIDS requirements 

Index Requirements description 
1 The EIDS should be able to detect or classify a wide variety of power 

system faults, disturbances, control actions, and cyber- attacks. 
2 Classification with greater than 90% accuracy. 
3 Classification with less than 5% false positives. 
4 Classification faster than synchrophasor data rate. 
5 The EIDS should be able to handle large volume WAMS 

heterogeneous datasets. 
6 Minimal memory usage. 

For this work, the NNGE data mining algorithm was chosen because NNGE with 

STEM fulfills the above mentioned requirements. NNGE is a nearest-neighbor-like 

algorithm based on generalized exemplars stored in memory. A nearest neighbor learner 

uses distance between a new example and a set of exemplars in memory to make a 

decision whether the new example belongs to a particular class. Generalized exemplars 

are a set of examples that represent one or more examples in the training datasets and 

generalized exemplars are represented by a hyper-rectangle. Nearest-neighbor-like 

NNGE uses a hybrid approach that combines the concept of a distance function and rules. 

The combination of these two methods provide better classification performance than 

only using instance based learning or rule induction methods. Generalization of 

exemplars reduces classification time without sacrificing accuracy [68]. In addition, the 

ability of NNGE to classify multiclass scenarios, sequential data, and handle different 

data formats such as numeric, nominal, and missing attributes makes NNGE a suitable 

method to develop a cyber-power EIDS [68]. 

In this chapter, the impact of the STEM data processing algorithm on the 

classification accuracy of the NNGE algorithm was evaluated. Second, NNGE was 
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evaluated for suitability for cyber-power event classification to create EIDS. 

Classification results support this hypothesis as the classification accuracy for both 

multiclass and binary class experiments were above 90%. 

The remainder of the chapter is organized as follows. Section 4.2 presents the 

literature review. Section 4.3 presents NNGE algorithm for training and testing classifier. 

Section 4.4 presents implementation of NNGE with STEM for EIDS and section 4.5 

presents experiments with results followed by conclusions in section 4.6. 

4.2 Literature review 

Current research on applying data mining to synchrophasor data for power system 

fault and disturbance classification can be found in [69] and [34]. The K-nearest neighbor 

algorithm was used to classify three phase faults (3LG), voltage oscillation, and voltage 

sag scenarios in [69]. The algorithm accuracy is not provided in [69]. Hoeffding Tree 

based stream data mining is used in [34]. This approach was able to classify 3LG and 

single line to ground (SLG) faults grouped for binary classification with greater than 90% 

accuracy.  Both [69] and [34] used simulated power system data. Both [69] and [34] 

propose methods to mine synchrophasor data. However, both are designed for power 

system measurement data only and do not incorporate any other types of system 

information. By only considering measurement data it is impossible to detect cyber-

attacks such as fault replay or command injection attacks in which valid measurements or 

control commands are replayed. 

Classification and regression trees (CART) have been used to detect impending 

island formation in [35]. Similarly, decision trees (DT) have been used to study 
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oscillatory and voltage stability events. Additionally, a dynamic security assessment was 

performed using ensemble based DTs [36] [37]. Reference [70] [71] studied various 

clustering techniques to identify appropriate unsupervised learning methods to identify a 

number of events in utility provided datasets. In these works, only specific cases of power 

systems conditions are considered and cyber-attack induced events are not considered. 

Only limited synchrophasor measurements were considered in [70] [71] and 

heterogeneous data was not used. 

The emergence of the smart grid, which depends heavily on communication 

infrastructure, has provided many benefits, but, also has introduced many vulnerabilities 

in power systems. Many researchers have worked on different intrusion detection systems 

(IDS). Network based IDS monitor network traffic to search for artifacts of cyber-attacks. 

Yang et al. propose an IDS to detect man in the middle (MITM) and denial of service 

(DoS) attacks [72]. Zhang et al used a data mining approach to identify malicious data 

and possible cyber-attacks from communication traffic from different levels of networks 

[73]. Researchers in [74] proposed anomaly detection techniques which extract behaviors 

from various communication protocols to create a full description of the communication 

pattern in an industrial control system. Network based IDS are able to detect malicious 

network traffic, however, they cannot detect physical changes in a system from cyber-

attacks. Specification based IDS monitor system state and alert when the state approaches 

an unsafe or disallowed state. A specification based IDS for advanced metering 

infrastructure (AMI) tracked system state using a manually built state machine is 

presented in [75]. The AMI specification based IDS works in concept, but, does not scale 

well due to the required manual construction of a state machines to track bulk electric 
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transmission system state. A few IDS described in literature leverage power system 

theories. Optimal power flow [76], and weighted state estimation [77] methods are used 

to detect cyber-attacks and false data injection attacks. However, these methods are only 

applicable to very limited cyber-attacks and cannot detect a wide variety of scenarios. 

Nearest neighbor approaches have been explored by other researchers. 

Researchers at Tennessee Valley Authority (TVA) implemented instance based learning 

to train Hadoop to identify patterns in synchrophasor data [56]. In this case, a 

combination of SAX and Euclidian distance functions were used to analyze the closeness 

of the archived synchrophasor data to train samples for un-damped oscillation, sudden 

load shed, and islanding. This work demonstrated the ability of an algorithm to identify 

patterns in data, however, only limited scenarios were considered. In addition, this work 

does not consider the use of heterogeneous data and cyber-attack events for classification. 

The TVA method also does not consider the sequential nature of power system events. 

NNGE has been tested using various data types and sizes to evaluate the 

performance in terms of classification accuracy and speed [68]. Datasets used for NNGE 

evaluations consist of a wide variety of data types including continuous, nominal, 

Boolean, and numeric. These datasets can be obtained from the UCI repository [5]. 

NNGE has been used to test data that are sequential in nature. NNGE was applied to 

Breast Cancer-Wisconsin (BCW) datasets where samples arrive periodically in a 

chronologically ordered dataset. Similarly, NNGE was applied to datasets with E. coli 

promoter gene sequences. The accuracy for BCW and E. coli datasets using NNGE were 

95.4 % and 78% [68]. 
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In recent research, a fusion of synchrophasor data with device and system logs 

with time synchronization was used to explore the viability of using machine learning 

methods to detect power system and cyber-attack events [49]. One percent sampled raw 

heterogeneous data with minimal processing was used to test various data mining 

algorithms. The test results showed variable classification accuracy across tested 

algorithms. These experiments were performed without considering the ability of 

algorithms to handle the sequential nature of heterogeneous data. The NNGE method was 

one of the algorithms used in the study. However the performance of NNGE was very 

poor for this work. This work attempted to classify individual rows found in datasets 

which contained thousands of temporally ordered samples related to a single event.  Such 

an approach does not consider the pattern of behavior related to the event. For this 

dissertation, the STEM algorithm was used to preprocess data for NNGE. STEM 

provides an ordered list of states related to one event. Each event is handled in its entirety 

rather than considered piecemeal. 

Pan et al. presented common path mining to create an IDS which used 

heterogeneous data to create a hybrid intrusion detection system capable of classifying 

cyber-attacks and power system events [38]. Common path mining used the STEM 

algorithm to preprocess data and then used frequent item set mining to extract common 

paths associated with specific system behaviors. A common path is a temporally ordered 

list of critical states associated with a specific cyber-attack or power system event type. 

Common paths were used as signatures for classification. The algorithm performed well. 

The common path mining evaluation shows some cases in which observed behavior 

matched multiple event common paths associated with different event types. In this case, 
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observed behaviors were classified as unknown.  The NNGE algorithm uses the concept 

of singles to create rules for behaviors which cannot be generalized. We believe this will 

lead to the ability to classify cases which common path mining called unknown. 

4.3 Non-nested Generalized Exemplars (NNGE) algorithm 

NNGE is an instance based classifier in which the algorithm creates if then else 

like rules represented by generalized exemplars. Generalized exemplars may be singles in 

which case the exemplar represents exactly one example from the training database. 

Alternatively, generalized exemplars may be hyperrectangles which represent more than 

one example of the same class from the training database. After training, new examples 

are classified by calculating a modified a Euclidean distance metric from the example to 

all exemplars. The new example is classified as the class of the nearest exemplar.  NNGE 

training and classification steps are discussed briefly in this section. NNGE can be used 

with nominal and continuous attributes. The attributes presented to NNGE for the case 

study in this work were nominalized using STEM. 

4.3.1 Training the classifier 

Training the NNGE algorithm is an incremental process which includes steps 

named classification, generalization, and dynamic feedback. Each labeled example in the 

training database is first classified by comparing the new example to all known 

hyperrectangles and single examples. The classification step in training uses the same 

methodology and distance metric as standalone NNGE classification (described below). 

Hyperrectangles are generalized rules which represent a class and single examples are 

previous examples of a class which do not fit into a hyperrectangle.  The classification 

88 



www.manaraa.com

 

 

 

  

 

 

 

 

 

    

     

 

 

   

 

 

 

step involves calculating the Euclidian distance from the new example to all 

hyperrectangles and single examples.  Equation 4.1 is used as distance metric. The 

classification step returns the closest hyperrectangle or single example for the new 

example. If the new example’s class matches the class of the hyperrectangle or single 

example returned from classification, then the returned hyperrectangle or single example 

are generalized to include the new example.  Generalization of hyperrectangles involves 

growing the hyperrectangle to represent the new example. Generalization of a single 

example forms a new hyperrectangle which generalizes both the old single example and 

the new example. If the new example’s class conflicts with the class of the 

hyperrectangle or single example returned by the classification step, the returned 

hyperrectangle must be adjusted by pruning out the conflicting example. Finally, during 

training dynamic feedback is used to adjust feature and exemplar weights used by the 

distance function. 

The training data set contains a set of m examples, i.e. training 

instances {𝑒1, 𝑒2, 𝑒3, … , 𝑒𝑚} . Each example 𝑒𝑗 is characterized by 𝑛 attributes, E1,…,En, 

and a class label. The objective of the algorithm is to create a set of generalized 

exemplars which is represented by a set of hyperrectangles {𝐻1, 𝐻2, … , 𝐻𝑘}. Each 

hyperrectangle has n sides where each side is associated with an attribute index from 

training.  A hyperrectangle side represents all observed states at that attribute index for 

that hyperrectangle. When a hyperrectangle is formed or grown each new attribute value 

for a given attribute index is combined with previously observed attributes using the 

disjunctive (or) combinatorial operator. The hyperrectangle is converted to an if/then 

statement using the conjunctive (and) and disjunctive (or) combinatorial operators. All 
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observed attributes for an attribute index are combined with the disjunctive operator. The 

terms from all attribute indices are combined with the conjunctive operator. Table 4.2 

provides a simple example with 3 observed examples from the same class. The 

hyperrectangle for Class Q1 for the examples in Table 4.2 can be represented by the 

if/then/else expression in Figure 4.1. 

Table 4.2 Example training database 

Example 𝐸1 𝐸2 𝐸3 𝐸4 Class 
e1 S0 S2 S3 Q1 
e2 S0 S1 S2 S3 Q1 
e3 S0 S5 S2 S3 Q1 

if (E1 ⊂ S0) & (E2 ⊂ (S1 | S2 | S5)) & (E3 ⊂ (S2 | S3)) & (E4 ⊂ (S3)) 
then Class = Q1 

Figure 4.1 Hyperrectangle in if/then/else form 

NNGE ignores missing attributes and therefore missing attributes do not 

contribute to the calculated distance. This property is useful for cyber-power EIDS 

because different scenarios of interest have different lengths. NNGE is also sensitive to 

the order of attributes within an example. The order of system states for a given event is 

very important for a cyber-power EIDS because a sequence of the same states in a 

different order implies a different event. 

4.3.2 Classification 

During classification the observed example is compared to all hyperrectangles and 

singles using the distance metric shown in equation 4.1. The observed example is as a 
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member of the class of the nearest exemplar. In the event of tie, the class with the most 

exemplars at the minimum distance is chosen [68]. 

2 
𝑑(𝐸𝑖 ,𝐻𝑖)𝑛 𝐷(𝑒𝑗, 𝐻𝑘) = 𝑊𝐻 √∑𝑖=1 ( 𝑤𝑖 𝑚𝑎𝑥−𝐸𝑖

𝑚𝑖𝑛 ) (4.1)
𝐸𝑖 

Equation 4.1 is used to calculate the distance between example 𝑒𝑗 and a 

hyperrectangle 𝐻𝑘 . Equation 4.2 defines the d() function for nominal attributes. 

Equation 4.3 defines the d() function for numerical attributes. The variable i in equations 

𝑚𝑎𝑥 and 𝐸𝑖 4.1-4.3 is the attribute position. For equation 4.1, 𝐸𝑖 
𝑚𝑖𝑛 define the observed 

range the ith attribute. For nominal attributes the range is always 1. The weights 𝑤𝑖  and 

𝑊𝐻 are adjusted during the training process to optimize classification fit. 

0, 𝐸𝑖 ⊂ 𝐻𝑖 𝑑𝑛𝑜𝑚 (𝐸𝑖 , 𝐻𝑖) = { } (4.2)
1, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

𝑚𝑖𝑛 𝑚𝑎𝑥 0,  𝐻𝑖 ≤ E ≤ 𝐻𝑖 
𝑚𝑖𝑛 𝑚𝑖𝑛 𝑑𝑛𝑢𝑚(𝐸𝑖, 𝐻𝑖) = { 𝐻𝑖 – 𝐸𝑖 ,  𝐸𝑖 < 𝐻𝑖 (4.3) 

𝑚𝑎𝑥 𝑚𝑎𝑥 𝐸𝑖 − 𝐻𝑖  , 𝐸𝑖 > 𝐻𝑖 

4.4 Implementation of Non-Nested Generalized Exemplar (NNGE) algorithm for 
cyber-power events 

An effective EIDS can be formed by preprocessing input data with the STEM 

algorithm and then using the NNGE algorithm for event classification.  The following 

text describes how NNGE were combined and describes how the resulting EIDS was 

evaluated. 
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4.4.1 NNGE algorithm for cyber-power events 

Cyber-power system events are unpredictable and random.  As such training 

instances used with data mining algorithms may or may not represent a concept strongly. 

Instance based learning is useful when available training data weakly or does not 

represent the concept to be learned. Alternatively, rule induction methods are useful when 

the concepts to be learned are strongly represented. Combining instance based learning 

and rule induction methods for dynamic power system events is an optimal solution. 

NNGE combines instance based learning and rule induction. NNGE uses a hybrid version 

of a rule based classifier which combines a distance function and general exemplars 

which provide more comprehensive rules. With appropriate preprocessing of data, the 

classification performance of NNGE can be optimized. NNGE performs poorly if the 

input data is noisy [68]. Conflicting examples significantly reduce classification 

performance. Using the STEM algorithm described in Chapter 3 to preprocess cyber 

power system events minimizes the state space and number of rules generated by NNGE, 

and results in high classification accuracy, small classification time, and small model 

building time. 

Figure 4.2 provides an overview of the NNGE+STEM based EIDS.  Raw 

heterogeneous data was collected and preprocessed using the STEM algorithm.  STEM 

produced an ordered list of states for each observed scenario. The lists of states were used 

as input to NNGE. The list of states represents all state changes associated with the event 

across its duration. Each list of states was labeled with the scenario class.  Figure 4.2 

shows data preprocessing, STEM, and classification process.  
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Figure 4.2 NNGE implementation for cyber-power events classification 

An implementation of NNGE algorithm is available in the Waikato Environment 

for Knowledge Analysis (WEKA) software platform. WEKA is open source software 

which implements many state of the art machine learning algorithms [78]. WEKA uses 

the Attribute-Relation File Format (ARFF) for input data.  All input data was processed 

to use this file format. 

4.4.2 Evaluation method 

NNGE was evaluated using k-fold cross validation. Cross validation is a 

commonly used method in a traditional batch setting to avoid over fitting issues. For each 

round of validation classification accuracy, kappa statistic, precision, true positive (TP) 

rate, and false positive (FP) rate were calculated. NNGE performance was compared to 

IDS performance metrics from [49] and [38]. 

Confusion matrices, also known as contingency or error matrices, are widely used 

to visualize the performance of a classification algorithm. Each column in the matrix is a 

predicted class whereas rows represents instances of an actual class. The confusion 

matrix provides information on classification accuracy, true positive (TP), true negative 

(TN), false negative (FN), and false positive (FP) that are used to evaluate the 

performance of an algorithm. 
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Classification accuracy is the ability of the model to correctly predict the class of 

the new examples. The classification accuracy is the number of correct classification 

predictions divided by the total number of instances. 

𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑇𝑃+𝑇𝑁 
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑖𝑡𝑖𝑜𝑛 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝜂) = = 

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠 𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 

(4.4) 

From the confusion matrix, the sum of diagonal elements represents the instances 

that are classified accurately and all entries not in the diagonal are incorrectly classified 

instances. 

The true positive rate is the proportion of all instances that are classified as class 

‘x’, among all the examples which truly are members of class ‘x’. Recall is equivalent to 

true positive rate 

𝑇𝑃 𝐷𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) 𝑟𝑎𝑡𝑒 = = (4.5)

𝑇𝑃+𝐹𝑁 𝑆𝑢𝑚 𝑜𝑣𝑒𝑟 𝑡ℎ𝑒 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑟𝑜𝑤 

The false positive rate is the proportion of instances that are classified as class ‘x’ 

but actually belong to a different class. 

𝐶𝑜𝑙𝑢𝑚𝑛 𝑠𝑢𝑚 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝑥−𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝐹𝑃 
𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) 𝑟𝑎𝑡𝑒 = = 

𝑅𝑜𝑤𝑠 𝑠𝑢𝑚𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑜𝑡ℎ𝑒𝑟 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝐹𝑃+𝑇𝑁 

(4.6) 

Precision is the proportion of instances that are truly members of class “x” among 

all the instances classified as class “x”. Precision measures the positive predictive value. 

Precision is the measure of positive values which provides a sense of the false positive 

values when predicting a specific class. 
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F-measure is the combined measure of precision and recall. F-measure is the 

harmonic mean of precision and recall. 

For true positive rate, precision, and F-measure, values approaching 1.0 indicate 

strong classification performance. Additionally, the classifier must have low false 

positive rates to provide better classification confidence. 

In reality, power systems operate in normal conditions most of time. A data set 

sampled from a real power system would contain more than 99% normal operation data. 

The remaining part of the data would contain the events such as faults, outages, and 

attacks. If we evaluate the performance of an algorithm based on accuracy only, it may 

appear more effective than it actually is because of the large proportion of normal data. 

Cohen et al. introduced the kappa statistic which is suitable for classification 

performance evaluation [79]. It is an analog correlation coefficient which provides 

statistical significance between the class label and attributes of instances. The accuracy is 

normalized by a chance predictor. The Kappa statistic is calculated using equation 4.7. 

𝜌0−𝜌𝑐 𝑘 = (4.7)
1−𝜌𝑐 

The variables 𝜌0 and 𝜌𝑐 are prequential accuracy and chance accuracy. If a 

classifier is always correct then k=1. Higher values of the kappa statistic signifies 

stronger statistical dependence. 

The chance accuracy is calculated using the following equation 4.8 where N is the 

number of classes and m is the total number of instances. 

𝑁 𝑁 𝐶𝑖𝑗 𝑁 𝐶𝑗𝑖 
𝜌𝑐 = ∑ (∑ ( ) ∑ ( )) (4.8)𝑖=1 𝑗=1 𝑗=1 𝑚 𝑚 
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The two datasets described in Chapter 2 were used to evaluate NNGE. The first 

dataset includes 10239 random cases of single line to ground (SLG) faults at random 

locations, SLG fault replay attacks, line maintenance scenarios, command injection 

cyber-attack scenarios, disabled relay during fault cyber-attack scenarios, and instances 

normal power system operation. The second dataset extends the first by adding double 

line (LL) fault scenarios, three phase to ground (3LG) fault scenarios, and repeated 

command injection cyber-attacks (aka. the Aurora attack [7]). 

4.5 Results 

Classification results using data mining algorithms depend on many factors 

including data processing, data labeling, and algorithm selection. Results are highly 

influenced by the selection of attributes. For the work presented in this chapter, the 

STEM algorithm was used to reduce data size. The reduced data size minimizes memory 

required to train and test instances while preserving key events and patterns in the 

dataset. STEM depends upon three parameters: the number and types of attributes used, 

attribute quantization interval, and the time window for state extraction. In this chapter, 

experiments 1, 2, and 3 were performed to select appropriate attributes, quantization 

intervals, and the time window. Experiment results were analyzed by comparing 

classification accuracy, kappa statistic, and the number of rules generated by varying the 

chosen attributes, quantization interval, and the time window.  

Experiments 4 and 5 were performed to evaluate the NNGE algorithm based on 

the results from experiment 1, 2, and 3. In these experiments, NNGE was applied to 

multi-class and binary class datasets. Analysis of experiments 4 and 5 results support the 
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hypothesis that NNGE with STEM preprocessing provides effective classification for an 

EIDS. 

4.5.1 Test data 

The test data used for this work includes dataset 1 and dataset 2 as discussed in 

Chapter 2. The dataset 1 includes measurements and data logs associated with 10,237 

simulated cases of 41 power system contingencies and cyber-attack scenarios.  Detailed 

descriptions of the scenarios are provided in Appendix A. These scenarios consist of 

single line to ground SLG faults at variable locations in 1% increments from 10% to 90% 

on transmission line L1 and L2, SLG fault replay attacks on line L1 and L2, line L1 and 

L2 maintenance scenarios that mimic an operator remotely tripping relays to open a 

breaker at both ends of a transmission line, command injection attacks which illicitly trip 

a single relay, command injection attacks which illicitly trip two relays, attacks to disable 

primary protection of single relay in conjunction with a SLG fault, attacks to disable 

primary protection of single relay in conjunction with line maintenance, attacks to disable 

two relays in conjunction with a SLG fault, attacks to disable protection of 2 relays in 

conjunction with line maintenance, and finally normal power system operation. During 

all scenarios the load may be changed randomly from 200-400 MW. 

Dataset 2 includes measurements and data logs associated with 11,715 simulated 

cases of 45 scenarios.  Dataset scenarios include instances of all of the same scenarios 

present in dataset 1 and instances of 4 additional scenarios.  The added scenarios include 

double line (LL) faults on line L1 and L2, double line to ground (2LG) faults on line L1 

and L2, three phase to ground (3LG) faults, and Aurora attacks against relay R1. 
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The raw dataset is in comma separated values (CSV) format with labeled tuples 

that include 44 measurements and data logs (feature/attributes) in each row. The datasets 

were created by merging measurements from four PMUs, apparent impedance 

calculations, and log data from four relay event logs, four control panel logs, and four 

Snort logs. Phase voltages (Va, Vb, Vc), Phase current (Ia, Ib, Ic), and frequency from 

each PMU were used. The synchrophasor data sample rate was 120 samples per second. 

Execution of a single scenario consumes 2000-3000 tuples in the raw dataset 

which corresponds to approximately 16-25 seconds of simulation time. The STEM 

algorithm was applied to raw data.  From STEM each measurement was quantized, then 

mapped to states, then state extraction was performed, and finally each case of a scenario 

was represented as sequence of states. Hence, the input to NNGE for this work was a list 

of states. WEKA was used to convert the sequence of states dataset to ARFF format and 

evaluate the NNGE algorithm. 

4.5.2 Experiment 1: Attributes selection in STEM 

In this experiment, the impact of attribute selection on the classification was 

studied. Table 4.3 shows the different attribute selection test cases considered for this 

experiment. STEM was used to process data for each case. Once lists of states were 

obtained from STEM, the output list of states were converted to ARFF format and the 

NNGE algorithm was used to classify the scenarios. For this analysis, multiclass 

classification was considered. There are 41 classes in the dataset 1. Six test cases, 

described in Table 4.3, were considered to compare the multiclass classification 

performance of NNGE algorithm with different selected attributes. Cases 1, 2, 3, and 4 

evaluated NNGE plus STEM performance when just one of the 4 primary electrical 
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measurements was used (current, frequency, voltage, and impedance) in conjunction with 

the relay, control panel, and SNORT logs described above.  Case 5 evaluated NNGE plus 

STEM performance when all electrical measurements are present, but, no logs are 

available. Finally, case 6 included evaluated NNGE plus STEM performance with all 

electrical measurements and all logs present. 

Table 4.3 List of attributes for attribute selection test cases 

Test case Attributes 
Case 1 Only three phase currents (Ia, Ib, Ic) from four relays/PMUs 

with all logs 
Case 2 Only frequency  from four relays/PMUs  with all logs 
Case 3 Only three phase voltage (Va, Vb, Vc) from four relays/PMUs 

with all logs 
Case 4 Only apparent impedance seen by relay with all logs 

Case 5 Three phase Voltage (Va, Vb, Vc), three phase current (Ia, Ib, 
Ic), impedance, frequency from four relays/PMUs  without logs 

Case 6 Three phase Voltage (Va, Vb, Vc), three phase current (Ia, Ib, 
Ic), impedance, frequency from four relays/PMUs , and all logs 

One of the challenges for attribute selection when using STEM is that the states 

output from STEM depends upon the number and types of measurements input to STEM 

while the input to NNGE is the list of states. Commonly attribute selection methods 

implemented in WEKA are available to examine the value of states in the state list, but, 

cannot evaluate the attributes provided to STEM.  To evaluate attribute selection multiple 

passes of STEM + NNGE for different groups of attributes were evaluated. Results were 

evaluated based upon resulting accuracy, the number of rules generated, and the number 

of states from STEM obtained using different attributes.  Typically a smaller number of 

rules indicates a better model fit while a larger number of rules indicates a poor fit.  Too 
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many inputs can lead to an increase in the number of states output from STEM without 

adding additional information.  Too many states can be expressive of over fit. 

Alternatively, too few states may indicate a poor fit due to a lack of information related to 

events NNGE will classify. There is no heuristic to evaluate the number of rules or 

number of states directly. However, trends in the number of rules and number of states 

can be helpful in evaluated attribute selection. 

Domain expert knowledge is one of the keys to successfully identify the 

appropriate attributes required to enable classification of particular event scenarios. A 

significant attribute for one event may not be significant for different type of event. Also, 

changes in measurements and data logs depend upon the type of event and the location of 

sensors. For example, during faults, current values for the faulted phase swing over a 

very large range, voltage dips significantly, frequency changes significant, impedance of 

the line changes significantly. For transmission line and generator loss, frequency 

excursion is significant but voltage and current values do not change as much when 

compared to faulted scenarios or changes slowly. Similarly, sensors close to the event 

location see more changes than the sensors farther from the event location. In general, a 

change in voltage and current will result in a change in impedance but limiting to an 

impedance calculation for all the scenarios may not reflect the true state of the system. 

The scenarios in the datasets used to evaluate NNGE cover a wide variety of event types 

and therefore have a wide variety of impacts on sensor measurements. As such, it is 

difficult to manually choose a particular attribute or a set of attributes for use with NNGE 

and STEM. Experiments were performed to individually analyze the classification 
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performances with different combinations of attributes to decide which attribute choices 

results in better classifier performance. 

Classification accuracy and Kappa Statistics for different  
cases 
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Figure 4.3 Classification accuracy and Kappa statistic for different attributes as input 
to NNGE 

For cases 1-3, Classification accuracy and kappa statistic was approximately 87% 

when using only current, frequency, or voltage with logs and is shown in Figure 4.3. 

Analysis of confusion matrices (see appendix B) for these three cases revealed that major 

misclassification occurred among neighboring classes with similar scenarios.  This 

suggest more information is needed to distinguish between the classes.   Some of 

misclassification between non-similar scenarios was present among case 1, case 2, and 

case 3. For example, the frequency signature for attacks for faults when relays are 
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disabled by attack and SLG fault replays leads to the best classification when frequency 

data is present. Similarly, there were less number of matched states when using current 

attribute. Similarly, for classification of SLG faults versus and SLG fault replay attacks, 

availability of the current measurement led to less misclassifications than voltage and 

frequency. These examples suggest that classification of the broad spectrum of scenario 

types in the datasets is best achieved when all electrical measurements are available. For 

case 4, impedance with logs resulted better results than current, voltage, and frequency. 

Apparent impedance carries the information of both current and voltage. This suggest 

current and voltage together provide more useful information than separately and more 

information that frequency. Case 5 examined accuracy when all electrical measurements 

are present without logs. The case 5 accuracy was 78% and kappa statistic was 77%. 

Analysis of the confusion matrix (see appendix B) revealed that the majority 

misclassifications for case 5 were among the attack classes. The snort logs and control 

panel logs are critical information to distinguish line maintenance and command injection 

attack. The presence of a SNORT alert and control panel alert suggests valid line 

maintenance while the presence of only a SNORT alert without a control panel alert 

suggests an attack. Loss of this information resulted similar state sequences after STEM 

which caused more misclassification. Case 6 had the highest accuracy and kappa statistic 

at 93% and 92% respectively. 

Figure 4.4 shows the number of rules generated for different cases. From the 

figure it can be observed that inclusion of more electrical measurement information 

helped reduce the number of rules. The number of rules was significantly higher with less 

attributes. One of the major influences on the number of rules was found to be the 
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number of unique states found in the dataset after STEM. The number of states for 

different cases is shown in Figure 4.5. In most cases, a higher number of states 

corresponded to a reduction in the number of rules generated by NNGE training. 

However, NNGE rules depend upon various factors including the number of unique 

states, dynamics of the system, and attribute selection 

Number of Rules 
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Figure 4.4 Number of rules generated by NNGE for different attributes 
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Figure 4.5 Number of states for different cases 

Comparing these six attribute selection cases leads to multiple conclusions. First, 

the log information is critical for identifying cyber-attacks. Second, the combination of 

voltage, current, impedance, frequency, and logs (VIZF and logs) gives maximum 

accuracy and kappa statistic. Also, the combination of VIZF and logs led to a much 

smaller number of rules generated from NNGE training. Finally, measurement of the 

number of states did not provide useful information for attribute selection. 

Based upon this analysis, VIZF and logs were chosen for use in subsequent 

experiments to evaluate NNGE + STEM. Although, the use of VIZF was optimal for this 

study, the details of classification revealed that there were improvements and degradation 

of classification performance for different cases. This suggests that the VIZF gives good 

performance when treating overall scenarios and measurements holistically. However, if 

a classifier was built to classify a limited set of scenarios a limited set of attributes may 

be optimal. 
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4.5.3 Experiment 2: Variable quantization interval in STEM 

Experiment 2 was conducted to examine the impact of changing quantization 

intervals used by STEM on classification performance of NNGE. The STEM 

quantization interval should be adjusted for each selected numerical attribute. Each 

attribute will have a unique quantization interval.  Quantization intervals may be selected 

using domain expertise or through quantitative study.  For this work, quantization 

intervals for voltage, impedance, and frequency were selected using domain expertise.  

The quantization interval for current was chosen using a combination of domain expertise 

and quantitative study. 

For voltage three quantization intervals were selected; low, normal, and high. The 

low, normal, and high intervals are [0-0.95] per unit (PU), [0.95-1.05] PU, and (1.05-∞] 

respectively. These ranges are suggested by national steady state voltage regulation 

standard for voltage monitoring applications. An examination of the scenarios in the 

datasets used to validate the NNGE+STEM EIDS showed that there are not scenarios 

which need voltage information outside of these ranges and therefore these ranges were 

adopted for this work. There are potential scenarios such as voltage oscillation and 

voltage dip that may require different voltage quantization intervals. 

Frequency quantization is more complex. Choosing the quantization interval 

depends upon the interconnections and the type of control schemes. In the eastern 

interconnection under frequency load shedding starts at a threshold of 59.7 Hz. In 

ERCOT two frequency thresholds are used for load shedding. Load shedding 59.8 Hz and 

at 59.7 Hz a second group of loads are defined shed [65]. For this study, 59.8 Hz was 
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used as the threshold to define low frequency. No information was found on a high 

threshold. Therefore, high frequency was classified as above 60.2 Hz. 

The impedance intervals were named for the distance protection zones; zone 1 

(Z1), zone 2 (Z2), and normal (N). The Z1 interval was 0-80% of line impedance, Z2 is 

80%-150%, and normal is greater than 150%. 

Based upon domain expertise the initial quantization intervals for current were a 

range for low current, normal current, and high current. The low range was set to capture 

zero current and residual currents from measurement error and other factors. The low 

range was set to 0-110A. The normal range was set by considering standard practice for 

overcurrent protection schemes. Overcurrent protection schemes typically set the pickup 

current to twice the maximum load current. The maximum load current for all lines in the 

system was 500A. The intent of the high interval is to detect current in a fault state. 

Therefore the high range was set to start between the maximum load current and the 

pickup current. Through trial and error 700A was set as the top of the normal current 

range. The normal range was set to 110-700A.  When relying solely on domain expertise 

current greater than 700A is high. 

A quantitative study on current quantization intervals was conducted. In this study 

the normal and high intervals were divided into multiple smaller ranges to study the 

impact on classification accuracy, the number of NNGE rules created in training, and the 

number of unique states output from STEM. The quantization intervals used in this study 

are shown in table 4.4. 
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Table 4.4 Quantization intervals for different cases 

Cases Quantization intervals 
Case 1 0 -110, 110-1200, 1200-∞ 
Case 2 0-110, 110- 700, 700-1200, 1200- ∞ 
Case 3 0-110, 110-500, 500-700, 700-900, 900-1200, 1200-1500, 1500-∞ 
Case 4 0-110, 110- 300, 300-500, 500-700, 700-900, 900-1200, 1200-1500, 

1500-1800, 1800-∞ 
Case 5 0-110, 110-700, 700-900, 900-1200, 1200-1800, 1800-∞ 
Case 6 0-110, 110-700, 700-800, 800-900, 900-1000, 1000-1100, 1100-

1200, 1200-1500, 1500-1800, 1800-∞ 

Figure 4.6 shows comparison of classification accuracy and kappa statistic among 

the six cases. Decreasing the quantization interval size, i.e. increasing the number of 

intervals, reduced both classification accuracy and the kappa statistic value. Case 1 and 

case 2 have relatively large quantization intervals. Case 3 and 4 were used to evaluate the 

effect of quantization intervals for normal currents. Case 5 and 6 were used to evaluate 

the impact of quantization intervals when current measures in the fault range. The study 

revealed that subdividing the normal current range into multiple intervals significantly 

degrades the classification accuracy. The poor accuracy for cases 3 and 4, subdividing the 

normal current range, was due to the fact that the quantization created more state 

transitions which did not provide information related to the classified scenario. The 

increased states sometimes provide multiple conflicting examples for the same scenario. 

Results for cases 5 and 6 showed that smaller interval ranges for the fault current range 

had little impact on classification accuracy. In contrast, the reason for higher 

classification accuracy for larger quantization intervals is due to the fact that the 

scenarios considered in this study have large changes in current, and as such larger 

quantization intervals are able to express the current change equally well. 
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 Classification accuracy and Kappa statistics for different 
quantization intervals 
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Figure 4.6 Comparison of classification accuracy and Kappa statistic for different 
quantization intervals 

Figures 4.7 and 4.8 show the number of rules and number of states generated by 

NNGE + STEM algorithm respectively. It was observed that the relationship between 

rule generation and number of states is opposite. NNGE created more generalized rules 

with more states, more rules however results in lower accuracy and a lower kappa 

statistic value. 
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Figure 4.7 Number of rules generated by NNGE 
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Figure 4.8 Number of states generated by STEM 

From above analysis, the current quantization interval for case 2 was chosen as 

the appropriate current quantization interval for experiments 4 and 5. Case 1 and case 2 

had similar classification accuracy. Case 2 had less rules generated in NNGE training. In 

general less rules implies faster classification and smaller memory usage, therefore, the 

quantization intervals from case 2 were selected for all future experiments. 
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The selection of quantization intervals for larger systems with many scenarios can 

be challenging. Careful study of each scenario to learn how sensor measurements change 

across scenarios is needed to choose effective quantization intervals. Each sensor’s 

measurements should be carefully quantized so that the quantization interval captures the 

necessary patterns without introducing extra state changes which do not provide 

increased information related to the scenario. 

4.5.4 Experiment 3: Variable time window in STEM 

Experiment 3 was designed to evaluate the impact of STEM time window 

variation on NNGE classification performance. The STEM time window controls how 

many instances of a single state remain in a state list after compression when the system 

state is stable.  This allows the input to NNGE to represent how long the system stays in a 

single state during a longer sequence of states. Increasing the STEM time window does 

not cause fast state changes to be removed from STEM output. All state changes are 

maintained in STEM output regardless of the STEM time window setting. The intent of 

this experiment is to test if NNGE classification accuracy is dependent on representation 

of the length of these periods of stability within state sequences. Decreasing the STEM 

time window increases fidelity to the original data but also increases the state space 

which may lead to a decrease NNGE classification accuracy.  

For an example of the potential impact of STEM time window parameter, 

consider the two state lists from Table 4.5 for events 1 and 2 which are sequences of 

states related to events of class A and B respectively.  The only difference between these 

events is the duration of the stable period the system stayed in state S1.  If the STEM 

time window parameter is too high both events may be represented as (S0, S1, S2, S3) 
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after STEM, eliminating the distinguishing difference between them. If the STEM time 

window parameter is too low the length of all state lists may become too long and 

increase the state space of input data and lead to decrease classifier accuracy. 

Table 4.5 An example of sequence of states  

Event State List Class 
1 S0, S1, S2, S3 A 
2 S0, S1, S1, S1, S2, S3 B 

All events from datasets 1 and 2 were used for this experiment. The attributes 

used in this experiment were three phase Voltage (Va, Vb, Vc), three phase current (Ia, Ib, 

Ic), impedance (Z), and frequency (F) from four relays (or PMUs) R1, R2, R3, and R4, 

and log information from relays, control panel, and SNORT. 

The data rate after merging all STEM input variables was 120 samples per second 

which matches the Synchrophasor data rate. This data rate defines the maximum 

frequency of state changes and provides a lower limit for the STEM time window 

parameter of 8.33 milliseconds.  

The fastest events in the datasets are faults and resulting relay operation.  The 

distance protection zone 1 trip time was set for instantaneous relay operation for all 

experiments. The typical time for relay operation to a reflection of this event in a relay 

log or current measurement is on the order of 1-3 cycles (16.7 – 50ms). Another 

possibility a fast event pair of events is the time between 2 network packets. This time 

should be on the order of tens of milliseconds. 
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The slowest time between two events in the datasets should be the time between 

relay operation and automatic reclosing. This time is a relay setting and was set to 2 

seconds for the experiments. 

As such to test the effect of STEM time window parameter on NNGE 

classification accuracy the time window parameter was varied between 10ms and 2 

seconds. The exact time window values used for comparison are shown in Table 4.6. 

Table 4.6 Experiment cases 

Case Time window 
Case 1 0.01 second time window 
Case 2 0.1 second time window 
Case 3 0.5 second time window 
Case 4 1 second time window 
Case 5 2 second time window 

Figure 4.9 provides a comparison of classification accuracy and Kappa statistic 

for the different time window values used for this experiment. The time variation had 

very little effect on classification performance of the NNGE algorithm. The default time 

window of 0.5 second for all the above experiment was found to be optimal as compared 

to other time windows. The number of unique states created by STEM algorithms for all 

cases was same and was 18,193.  This is expected since the number of unique states is 

not depended on the time window parameter. The constant number of unique states 

supports the assertion that increasing the STEM time window parameter setting does not 

because system state changes to be lost in STEM output.  The number of rules generated 

by NGGE training was nearly the same for all STEM time window cases, as shown in 

Figure 4.10. 
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Classification accuracy and Kappa statistics for various 
time window in STEM 

92.8 

Case 1 Case 2 Case 3 Case 4 Case 5 

Classification accuracy % Kappa statistics % 

92 
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92.4 
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92.7 

Figure 4.9 Comparison of classification accuracy and Kappa statistic 

Number of rules 

132 

Case 1 Case 2 Case 3 Case 4 Case 5 

112 

114 

116 

118 

120 

122 

124 
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128 

130 

Figure 4.10 Number of rules generated by NNGE algorithms 

The above results did not show significant variation in classification accuracy, 

Kappa statistic, or number of rules generated. The time window of 0.5 seconds had the 

best classification accuracy and Kappa statistic and the lowest number of rules generated 
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by NNGE training. As such, the STEM time window parameter values was set to 0.5 

seconds for all remaining NNGE experiments. Based on these results, the same STEM 

time window parameter value was used for experiments related to Hoeffding Adaptive 

Tree (HAT) classification described in Chapter 5 of this dissertation. 

4.5.5 Experiment 4: Performance of NNGE for multiclass classification 

Experiment 4 was used to evaluate NNGE performance as an EIDS with 

multiclass classification. Datasets 1 and 2 were used for evaluation. All data was 

preprocessed using the STEM algorithm. The output from STEM, which was used as the 

input to NNGE training and classification was list of states for each event in datasets 1 

and 2 respectively. 

NNGE performance was evaluated using classification accuracy, kappa statistic, 

true positive rate, F-measure, and precision. 

Dataset 1 included 41 scenarios are labeled from Q1-Q41 with a total of 10,237 

instances of the 41 scenarios executed in random order with random system load. Dataset 

2 included 45 scenarios labeled from Q1-Q45 with a total of 11,715 instances of the 45 

scenarios executed in random order with random system load. 

This experiment was conducted to evaluate NNGE algorithm’s performance for 

cyber-power event classification. Quantized measurements are converted to state lists 

using STEM, the attributes change from measurements to state IDs. For this experiment, 

the attributes are states ID in each column and a row corresponds to a scenario case. The 

selection of attributes, quantization intervals, and time window was chosen according to 

the findings from experiments 1, 2, and 3. 
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Ten-fold cross validation was used for the evaluation. For dataset 1, NNGE 

training created 123 exemplars(s) including 107 hyperrectangles and 16 singles. The low 

number of rules supports low memory usage, and suggests a good model fit which 

improves classification accuracy. The NNGE model was built in 216.01 seconds. For 

dataset 2, NNGE created 136 exemplars, 113 hyperrectangles, and 23 singles. The NNGE 

model was built in 348.27 seconds. The NNGE created more rules for larger datasets and 

required more time to build the model. 

Classification accuracy for dataset 1 was 92.6% with kappa statistic of 0.92 and 

94.0% with kappa statistic of 0.94 for dataset 2. The algorithm performed very well on 

classification accuracy, kappa statistic, true positive rate, F-measure, and precision for 

both datasets. The true positive rate, F-measure, and precision are plotted in Figures 4.11 

and 4.12 for datasets 1 and 2 respectively. All values are close to 1 which signifies strong 

algorithm performance. The FP rate was plotted for both datasets in Figure 4.13. Figures 

4.14 and 4.15 are confusion matrices for datasets 1 and dataset 2 respectively. The 

confusion matrices are combined across all 10 rounds of validation. 
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TP Rate, Precision, and F-measure for dataset 1 vs. Class 

TP Rate Precision F-Measure 

Figure 4.11 TP rate, precision, and F-measure for multiclass classification of dataset 1 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

Q
1

Q
2

Q
3

Q
4

Q
5

Q
6

Q
7

Q
8

Q
9

Q
1

0
Q

1
1

Q
1

2
Q

1
3

Q
1

4
Q

1
5

Q
1

6
Q

1
7

Q
1

8
Q

1
9

Q
2

0
Q

2
1

Q
2

2
Q

2
3

Q
2

4
Q

2
5

Q
2

6
Q

2
7

Q
2

8
Q

2
9

Q
3

0
Q

3
1

Q
3

2
Q

3
3

Q
3

4
Q

3
5

Q
3

6
Q

3
7

Q
3

8
Q

3
9

Q
4

0
Q

4
1

Q
1

0
2

Q
1

0
8

Q
1

1
4

Q
1

1
9

 

TP Rate, Precision, and F-measure for dataset 2 vs. Class 

TP Rate Precision F-Measure 

Figure 4.12 TP rate, precision, and F-measure for multiclass classification of dataset 2 
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Comparison of FP rate between dataset 1 and dataset 
2

 FP Rate Dataset 2 FP Rate dataset 1 

Figure 4.13 FP rate for scenarios in multiclass classification in dataset 1 and dataset 2 

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41

373 1 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q1

21 292 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Q2

0 4 348 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q3

0 0 0 322 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 Q4

0 0 0 12 310 1 1 0 1 0 6 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 0 0 1 Q5

0 0 0 0 1 359 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 2 0 Q6

0 1 0 0 0 0 229 1 0 0 0 0 2 0 0 0 0 0 3 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 Q7

0 1 0 0 0 0 18 182 12 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 3 0 0 0 0 0 Q8

0 0 0 0 0 0 0 3 224 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q9

0 0 0 0 0 0 0 0 0 216 6 3 0 5 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q10

0 0 0 0 21 0 0 0 0 21 145 27 0 7 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 6 0 0 0 Q11

0 0 0 0 0 0 0 0 0 2 12 207 0 6 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 Q12

0 0 0 0 0 0 0 0 0 0 0 0 258 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q13

0 0 0 0 0 0 0 0 0 0 0 0 0 232 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q14

0 0 0 0 0 0 0 0 0 0 0 1 0 0 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 Q15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q16

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 193 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q18

0 0 0 0 0 0 3 0 3 0 0 0 17 0 0 0 0 0 254 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q19

0 0 0 0 0 0 0 0 0 3 5 1 0 22 0 0 0 0 0 231 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q20

0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 197 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 Q21

0 1 25 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 10 175 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q22

10 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 196 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q23

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 9 170 9 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 Q24

1 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 190 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q25

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 11 183 4 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Q26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 159 1 0 0 0 0 0 0 0 0 7 0 0 0 1 Q27

0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 189 0 0 0 0 0 0 0 1 0 0 0 0 0 Q28

0 0 0 15 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 158 14 0 0 0 0 0 0 1 0 0 0 0 Q29

0 0 0 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 220 0 0 0 0 0 0 0 2 0 0 0 Q30

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 80 0 0 0 0 0 0 0 0 0 0 Q31

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0 0 Q32

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 0 Q33

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 64 0 0 0 0 0 0 0 Q34

0 0 0 0 0 0 5 0 1 1 0 3 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 468 0 0 0 0 0 0 Q35

0 1 0 0 1 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 453 1 0 0 0 0 Q36

0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0 0 0 0 469 1 0 0 1 Q37

0 0 0 0 0 0 0 0 0 0 1 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 2 438 0 0 0 Q38

0 0 0 0 0 0 0 0 0 0 0 0 128 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 24 0 0 0 0 0 0 0 103 1 0 Q39

0 0 0 0 0 2 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 248 0 Q40

0 0 0 0 1 0 3 0 1 7 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 201 Q41

Figure 4.14 Confusion matrix for scenarios using state lists as input in dataset 1 
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Figure 4.15 Confusion matrix for scenarios using state lists as input in dataset 2 

An analysis of classification accuracy was conducted.  Scenarios with significant 

misclassification rates were examined.  Examination of misclassifications noted in the 

confusion matrices provides explanation for peaks and valleys in the TP rate, Precision, 

F-Measure, and FP rate curves from Figures 4.11 – 4.13.  

Scenarios (Q7-Q12) were often misclassified as each other. Each of these 

scenarios are instances of single line to ground faults replay attack. The only difference 

between the scenarios is the distance from the primary relay.  The single line to faults 

were group by increasing distance.  Pan et al. conducted a similar study with the same 

datasets [38]. Pan notes that misclassifications between similar single to ground faults 

categories occurs due to minor variations in relay operation time, breaker opening time, 

and measurement dynamics. These misclassifications are not critical as the main 
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objective of the EIDS is to distinguish valid fault events from cyber-attacks which may 

mimic such an event.  Other technologies are available to power system operators to 

determine the fault distance. 

Scenarios Q21-Q30 and Q35-38 are instances of cyber-attacks in which 1 (Q21-

Q30) or 2 (Q31-Q38) relays have been disabled through a cyber-attack and then the 

transmission line is subjected to a fault.  These scenarios are also group by the distance of 

the fault from the primary relay and also often are confused within these groups.  

Confusion with the groups of the same cyber-attack is acceptable. 

Multiple instances of scenario Q19, a cyber-attack which send network packets to 

remotely operate relays, were misclassified as scenario Q13, a legitimate event in which 

an operator remotely operates relays to allow for line maintenance. This misclassification 

is bad. A cyber-attack is classified as a legitimate event. A sensor was placed at the 

operator’s computer to log the operator’s intent to remotely operate relays.  A second 

sensor was placed at the relay to detect network packets with commands to operate the 

relay. The intent of this sensor arrangement was to provide a different signature for these 

two scenarios. Across both datasets scenario Q19 was correctly classified 92% of 

instances. So, the sensor arrangement provides good coverage, but, future work is needed 

to improve classifier accuracy between these scenarios.  Scenarios Q20 and Q14 are 

similar to scenarios Q19 and Q13 respectively except the scenarios are performed on a 

different transmission line.  Scenarios Q20 and Q14 had misclassification rates as Q19 

and Q13 for the same reasons. 

Multiple instances of scenario Q22, a cyber-attack in which relay R1 is disabled 

and a fault occurs on transmission line L1 was misclassified as scenario Q1, a single line 
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to ground fault on line L1. Because only relay R1 was disabled relay R2 operates. When 

relay 2 operates is removes the path to the load and the current drops to 0 amperes. The 

PMU measurements are similar for both scenarios because the both have similar 

outcomes. This causes the misclassifications. 

The classification of scenario Q39, a cyber-attack disabled both relays on a 

transmission line when an operator remotely operates relays for line maintenance, was 

significantly low. The vast majority of misclassifications involve scenario Q39 

misclassified as scenario Q13, a legitimate event in which an operator remotely operates 

relays to allow for line maintenance. Examination of the lists of states output from STEM 

for both scenarios revealed that in most cases the first 5 states for both scenarios are the 

same. NNGE classification ignores extra states when calculating the distance between an 

instance and a hyperrectangle or single example. Scenario Q39 is a simple event and only 

typically has 5 states. When NNGE calculates the distance between a new example of 

Q39, which is shorter than Q13, it ignores the extra states after the first 5 which match 

and calculates 0 distance between these scenarios. This is a bad result. Two scenarios 

which are obviously different because of their length are confused because the first N 

states match. To compensate for this issue another sensor may be added to force a 

difference between the scenarios with a common initial sequence of states.  Adding a 

numeric value which is the length of the tuple as the first item in all tuples would cause 

the distance to be different between the two scenarios and likely fix this issue. 

The average testing time per instance is plotted for all rounds of validation in 

Figure 4.16. The average testing time was slightly over 0.2 milliseconds. The 0.2 

milliseconds test time is significantly faster than the current synchrophasor reporting time 
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(8.33 ms for 120 samples per second sample rate). Hence NNGE classification can be 

used in real time applications. 
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Figure 4.16 Testing time per instance in millisecond for dataset 1 and dataset 2 

4.5.6 Experiment 5: Performance of NNGE for binary class classification 

In this experiment, classification performance of NNGE algorithm for binary 

classification was evaluated. Both dataset 1 and 2 were used for this experiment. The 

STEM algorithm was used to obtain list of states for each scenarios. The scenarios were 

classified into two classes. All non-attacks scenarios were relabeled normal. All attack 

scenarios were relabeled as attack. Tables 4.7 and 4.8 shows how each scenario was 

relabeled for the 2 datasets. 
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Table 4.7 Binary Class Grouping for Dataset 1 

Normal Attack 
Q1, Q2, Q3, Q4, Q5, Q6, Q13, Q14, 
Q41 

Q7, Q8, Q9, Q10, Q11, Q12, Q15, 
Q16, Q17, Q18, Q19, Q20, Q21, Q22, 
Q23, Q24, Q25, Q26, Q27, Q28, Q29, 
Q30, Q31, Q32, Q33, Q34, Q35, Q36, 
Q37, Q38, Q39, Q40 

Table 4.8 Binary Class Grouping for Dataset 2 

Normal Attacks 
Q1, Q2, Q3, Q4, Q5, Q6, Q13, Q14, 
Q41, Q102, Q108, Q114 

Q7, Q8, Q9, Q10, Q11, Q12, Q15, 
Q16, Q17, Q18, Q19, Q20, Q21, Q22, 
Q23, Q24, Q25, Q26, Q27, Q28, Q29, 
Q30, Q31, Q32, Q33, Q34, Q35, Q36, 
Q37, Q38, Q39, Q40, Q119 

The algorithm performed well for binary class classification. The overall accuracy 

improved as compared to multiclass classification. The overall accuracy was 96% and 

95% for datasets 1 and 2 respectively. The Kappa statistic was 0.9 for both datasets. 

NNGE less rules during training as compared to multiclass case. For dataset 1, training 

created 74 rules; 43 Hyperrectangles and 31 singles. The NNGE model was built in 43.49 

seconds. For dataset 2, training created 79 rules; 51 Hyperrectangles and 28 singles. The 

NNGE model was built in 69.72 seconds. Dataset 2 had more rules due to the 

introduction of new scenarios. Also, the model built time increased due to larger dataset. 

The reduction in the number of rules when compared to multiclass classification signifies 

the algorithm was able to generalize rules more effectively for binary classification. In 

addition, the model built time was significantly reduced in binary cases than multiclass 

cases. 
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Table 4.9 Confusion Matrix for dataset 1 

Attack Normal 
7176 252 Attack 
167 2642 Normal 

Table 4.10 Confusion Matric for dataset 2 

Attack Normal 
7292 363 Attack 
166 3894 Normal 

Table 4.9 and 4.10 show confusion matrices for binary class classification. For 

dataset 1, approximately 3.4 % of attacks were classified as normal and approximately 

6% of the normal events were classified as attacks. Analysis of the misclassifications 

between binary classes is difficult due to the large number of scenarios grouped together. 

However, from the multiclass analysis we know there were a significant number of cases 

of attacks classified as non-attacks and vice versa. The same reasons for misclassification 

are likely in the binary classification case. 

Tables 4.11 and 4.12 show TP rate, FP rate, precision, and F-measure. TP rate, 

precision, and F-measure values signifies strong performance by NNGE. 

Table 4.11 TP rate, FP rate, Precision, and F-measure for dataset 1 

TP Rate FP Rate Precision F-Measure Class 
0.97 0.06 0.98 0.97 Attack 
0.94 0.03 0.91 0.93 Normal 
0.96 0.05 0.96 0.96 Weighted Average 
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Table 4.12 TP rate, FP rate, Precision, and F-measure for dataset 2 

TP Rate FP Rate Precision F-Measure Class 
0.95 0.04 0.98 0.97 Attack 
0.96 0.05 0.92 0.94 Normal 
0.96 0.04 0.96 0.96 Weighted Average 

Figure 4.17 shows the test time per instance in milliseconds. The average test time 

per instance was slightly higher than 0.2 millisecond. The testing time per instance is well 

below the current synchrophasor data rate which means binary classification can be 

performed in real time.  The classification time is similar to the same metric for 

multiclass classification. 
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Figure 4.17 Testing time per instance in millisecond for dataset 1 and dataset 2 
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4.5.7 Comparison of performance of NNGE algorithms with other results in 
literature. 

Event classification and intrusion detection for power systems is an emerging 

field of research. Datasets from the test bed described in this work have been used to 

evaluate other machine learning algorithms, common path mining [38] and other 

common machine learners [49], for suitability in classifying power system and cyber-

attack events. Due to the evolution of the power system events, cyber-attacks, and 

datasets none of the works were evaluated with the exact same datasets. The Common 

path mining algorithm preprocessed data using the STEM algorithm, developed by the 

author of this dissertation, and then applied frequent item set mining.  The work in [49] 

used selected a 1% random sample to preprocess the dataset before training and 

classification.  

A comparison of all methods is presented in Table 4.13. Binary classification 

between the common path mining algorithm and NNGE has comparable accuracy. The 

NNGE multiclass evaluation included 45 scenarios while common path mining multiclass 

had 7 scenarios. STEM. NNGE had similar multiclass accuracy with more classes. The 

top performers from [49] were JRipper and Adaboost + JRip.  The binary and three-class 

classification performed better than multiclass classification for JRipper, and Adaboost + 

JRip. Adaboost + JRip performed very well and is comparable to common path mining 

and NNGE + STEM.  NNGE + STEM had the best performance for binary and broader 

multiclass classification as indicated by various performance indices in Table 4.13. 

The evaluation presented in [49] included an evaluation of NNGE with a 1% 

random sample of raw data. STEM was not used to preprocess data with this algorithm. 
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The NNGE results without STEM are shown in Table 4.13 in the NNGE (No STEM) 

column. NNGE + STEM outperforms NNGE without STEM for all metrics. 

Table 4.13 Comparison of NNGE with STEM to other algorithms 

JRip Adaboost + JRip Common Path 
Mining 

NNGE (No 
STEM) 

NNGE + 
STEM 

Number of 
classes 

2 3 41 2 3 41 2 7 2 41 2 45 

Accuracy 90% 90%75% 95% 95% 90% 95% 93% 75% 25% 96% 94% 
Precision 0.88 0.89 0.72 0.95 0.98 0.85 NA 0.98 0.52 0.33 0.969 0.943 

Recall 0.70 0.85 0.60 0.91 0.93 0.80 NA 0.95 0.25 0.18 0.969 0.940 
F-Measure 0.78 0.90 0.63 0.90 0.95 0.81 NA 0.96 0.18 0.18 0.969 0.939 

4.6 Conclusion 

This chapter presented an evaluation of the NNGE machine learning algorithm 

with STEM preprocessing for effectiveness as an event and intrusion detection system 

(EIDS) for cyber-power event classification. NNGE + STEM is suitable for classifying 

cyber-power events due to its ability to combine instance based learning and rule 

induction methods which provides excellent classification accuracy. Additionally, the 

ability of NNGE to generalize rules minimizes memory usage and provides fast 

classification. The ability of NNGE to handle sequential data makes it suitable for 

datasets in which each scenario is represented as a set of states in temporal order. 

The experiments in this chapter demonstrated NNGE + STEM enables an 

excellent EIDS that can handle large WAMS heterogeneous data. The EIDS achieved 

more than 90% classification accuracy, greater than 90% kappa statistic, and 

classification times well below the current synchrophasor data reporting rate. These 

results demonstrate that an EIDS implemented using NNGE + STEM fulfills the EIDS 

requirements. Furthermore, the results demonstrate that traditional batch processing data 
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mining techniques can be applied if a proper data processing method is used to reduce the 

data size maintaining patterns in the datasets. NNGE + STEM performed very well as 

compared to existing results from literature. 

Several experiments were performed to accommodate larger and diverse cyber 

and power scenarios. Similarly, performance of the NNGE algorithm with different 

attribute selection, STEM quantization intervals, and STEM time windows was 

evaluated. Significant changes in classification performance were observed with different 

attribute selection combinations. Combining Synchrophasor data with log information 

from various sources was found critical for cyber-attack classification. Varying the 

STEM quantization intervals for selected attributes has a significant impact on the 

classification performance. STEM quantization interval selection is highly dependent on 

the variable, the variable’s role in state changes related to an event, and the events chosen 

for classification. The impact of varying the STEM time windows was found to be 

minimal. 
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APPLYING HOEFFDING ADAPTIVE TREE (HAT) FOR REAL TIME CYBER-

POWER EVENT CLASSIFICATION 

5.1 Introduction  

High speed time synchronized WAMS data has the ability to provide near real 

time event information if information is extracted and analyzed properly. However, 

continuous streams of high speed data pose significant challenges in data storage, 

management, and handling.  This research work evaluated a data stream mining 

technique based on Hoeffding trees to classify cyber-power system events to develop a 

real time EIDS. A real time EIDS must be able to process a stream of WAMS 

heterogeneous data, build a model on the fly, adapt to distribution changes in the data, 

use low memory, and have an evaluation time less than the synchrophasor data rate. 

Compressed quantized data and lists of system states obtained from the STEM algorithm 

were used as sequential input to evaluate the classification accuracy of the Hoeffding 

Adaptive Trees (HAT) algorithm augmented with the drift detection method (DDM) and 

adaptive windowing (ADWIN). Henceforth, the acronym HAT will be used to refer to 

HAT augmented with DDM and ADWIN. DDM is good to detect abrupt changes while 

ADWIN is used dynamically to detect abrupt and slow changes over time. Such change 

detection is suitable for power system WAMS data since WAMS data evolves over time 

and can undergo abrupt changes. This work provides three key contributions in the 
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development of a real time EIDS. First, unlike traditional batch processing methods, data 

stream mining using HAT provides a suitable way to handle an infinite series of data.  

Data storage and management issues are addressed by use of HAT. Second, the ability of 

the method to classify multiclass and binary class data in real or near real time provides a 

great opportunity to implement the method for a real system. Real time EIDS can be used 

to monitor and classify illicit and genuine cyber-power system events for real time 

situational awareness. Third, this work evaluates the suitability of the STEM algorithm 

for preprocessing data stream mining input. Two datasets “dataset 1” and “dataset 2” 

with 41 and 45 scenarios respectively were used to analyze HAT. The experiments 

performed in this work demonstrate that HAT was able to handle large WAMS 

heterogeneous data as a stream to build and update the model on the fly with a 

classification accuracy greater than 92% for multiclass and greater than 96% for binary 

classes. Also, the experiments demonstrate that HAT uses low memory and achieves low 

evaluation time faster than the synchrophasor data rate which enables development of an 

effective real time EIDS. 

Data stream mining addresses the continuous data problem and can deal with very 

large data sizes. Data stream mining techniques can be applied to real time applications 

which are too large for classical machine learning and data mining techniques [6]. 

WAMS cyber power system event detection includes both large continuous streams of 

data and a need for real time classification. Data mining techniques have evolved to 

process large datasets, however, many algorithms still fail to address the problem of 

continuous data and evolving data streams. A classification algorithm for real time EIDS 

must meet some specific requirements to be suitable as an EIDS. The classification 
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method should be able to process a single example at a time, use limited memory, work 

in a limited amount of time, and be ready to predict at any time [19]. The requirements 

for real time EIDS in this work are summarized in Table 5.1. 

Table 5.1 Real time EIDS requirements 

Index Requirements 
1 The real time EIDS should be able to handle large WAMS data as an 

input stream. 
2 The real time EIDS should be able to detect and adapt to concept 

changes in the data and update the classifier model. 
3 The real time EIDS should be able to classify binary and a wide range 

of multiclass scenarios with high accuracy and kappa statistic. 
4 The real time EIDS should use a low memory. 
5 The real time EIDS should have fast evaluation time. 

With continuous data, a single training process is not efficient since the 

previously created model cannot be updated when a new example arrives.  The model 

may become outdated, and, hence, the single training method is inappropriate [19]. Data 

stream mining algorithms should be able to forget irrelevant past data and add new 

instances to create an updated model. Additionally, in the case of evolving data streams 

such as WAMS data, the algorithm must be able to detect changes and classify events. 

HAT uses decision trees which are built by an incremental decision tree inducer 

that can deal with data streams with distribution and concept drift. HAT adapts and learns 

from the changing data streams over time and does not need a fixed sliding window in 

order to deal with the concept change or concept drift. HAT places frequency estimators 

at every node. ADWIN can be used as a change detector for HAT. One instance of 

ADWIN is used at each node to monitor the classification error rate. When a change is 
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detected, a new alternate subtree is created. The average error of the original subtree and 

the average error of the alternate subtree are compared and if there is a significant 

improvement with the alternate subtree, the original is replaced by the alternate [80]. 

HAT is a suitable candidate for WAMS data because it can process the data stream in real 

time, uses ADWIN and DDM for change detection, and includes a mechanism for 

forgetting old inferences and adding new inferences to continuously update the model. 

Also, the ability of HAT to handle nominal data and perform multiclass classification is 

useful as an EIDS [19]. 

The chapter is organized as follows. In section 5.2, a literature review is provided. 

The next section, 5.3, presents HAT for cyber-power events, algorithms, and evaluation 

methods. Section 5.4 and 5.5 present a power system case study with experiments and 

results. 

5.2 Literature review 

Many algorithms for dynamic data such as Hoeffding tree algorithms, very fast 

decision trees (VFDT), and concept-adapting very fast decision trees (CVFDT) [19] have 

been developed and applied. Data stream mining methods have been tested with various 

synthetic datasets and a very few real world datasets [39]. The authors in [39] highlighted 

the scarcity of real world datasets. The UCI ML [5] and KDD [48] are the most common 

sources of data that researchers use for machine learning algorithms. The UCI machine 

learning repository provides a few real world datasets. Forest cover type datasets, poker-

hand datasets, and electricity datasets have been used to evaluate the performance of data 

stream mining algorithms [81]. The size of these datasets are very small, hence, these 
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datasets are not ideal for data stream mining [39]. Bifet et al. evaluated various data 

stream mining algorithms that can adaptively learn from data that changes over time [82]. 

A sliding window based Hoeffding window tree and Hoeffding adaptive tree were 

developed. The sliding window methods are based on the change detector and estimator 

and the implementation ensures theoretical guarantees. These algorithms were tested with 

synthetic data from the UCI repository. All of the above studies focused on improving the 

algorithm rather than exploring implementation to real world applications. This is mainly 

due to the lack of large datasets required to properly evaluate the method. 

Data stream mining for power systems and cybersecurity are at the early stages of 

research. Dahal et al. evaluated data stream mining techniques for limited power system 

events with a limited number of instances [34] using only PMU data. Cyber-attacks were 

not considered in this study. Static and evolving data stream mining was explored using 

Hoeffding Trees (HT) and Hoeffding Adaptive Trees (HAT) respectively. The ability of 

the data stream mining technique to handle a wide variety of cyber-power scenarios, and 

larger datasets was not discussed. 

Recently, a sliding window technique was implemented to classify events in 

real time. The TVA OpenPDC framework for real time modal and dampening analysis 

includes an oscillation monitoring system (OMS). Frequency domain analysis with Fast 

Fourier Transforms (FFT) was performed with a window of 7200 samples to detect 

oscillation.  This method is promising for a particular event, however, the robustness of 

the method and its ability to classify multiple cyber-power events was not discussed [56]. 

Also, the analysis was performed only using synchrophasor data. 
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A method based on cloud computing environments which leverages parallel 

computing for storage, processing, and analyzing data collected from sensors to identify 

and predict machine faults is presented in [83]. Sequential sensor data such as trip and 

fail information from turbines is collected and a Case Based Reasoning (CBR) approach 

is implemented in Hadoop to achieve fault diagnostics locally and globally for online and 

offline cases. In the online model, the local computing node predicts faults but the local 

model relies on very limited cases of faults. The real time machine data is continuously 

monitored and the status is predicted. This method is used only for machine fault 

diagnostics and requires a pre-defined set of cases. Moreover, this method requires large 

quantities of compute resources as it leverages parallelization. In contrast, the HAT 

implementation in the Massive Online Framework (MOA) software does not require any 

special computing resources. 

Gama et al. presented an electricity load forecast methodology which uses 

incremental clustering of data streams and incremental learning with a neural network 

[84]. The incremental clustering is based on a dissimilarity measure which depends upon 

correlation between time series. The neural network is incrementally trained with 

incoming data. This method has good performance on slow changing data. However, it 

does not perform well with abrupt or sudden changes in data which can occur in the case 

of WAMS data. Additionally, the incremental method requires more examples in order to 

reach neural network convergence. 

Mustafa et al. presented an evaluation of various data stream mining algorithms 

available in the MOA framework [85]. The objective of this work was to find candidate 

data stream mining algorithms for the Advanced Metering Infrastructure (AMI). Seven 
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different algorithms were evaluated using a publicly available KDD cup dataset for AMI 

transactions. Also, simulated datasets with 5 different types of attacks were used in 

evaluation. The performance of the algorithms were presented in terms of accuracy, 

kappa statistic, running time, and model cost. The accuracy of classifiers was above 90%. 

This study is based on existing datasets and the scenarios include only limited cyber-

attacks. The datasets contain only two classes of transactions, normal and attack, and the 

study did not consider any power system related scenarios. In the research presented in 

this chapter, the application of data stream mining for heterogeneous datasets is 

presented. Heterogeneous datasets require more data processing to achieve good 

classification results. 

5.3 Hoeffding Adaptive Tree (HAT) for data stream mining  

Among the different variants of HAT, in this work, HAT with ADWIN and DDM 

was studied for real time event classification. 

Hoeffding Adaptive Tree (HAT) mining is based on Concept-adapting Very Fast 

Decision Trees (CVFDT). HAT is a modified version of the Hoeffding Tree (HT) 

algorithm [87]. The Hoeffding tree (HT) induction algorithm creates decision trees from 

the data stream and updates the tree after inspecting each example. The decision tree is 

constructed with an incremental design. Unlike traditional decision trees, HT does not 

require samples to be stored memory. The tree holds sufficient information in each node 

to grow the tree and perform classification [19]. Each node in the decision tree contains a 

test which depends upon the values of particular attributes. Hence, splitting a node is a 

crucial part of building a decision tree. The most popular node splitting method uses 
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information gain. The estimated information gain is a heuristic used to guide the splitting 

process. One of the key factors that influences decision making is an appropriate number 

of examples needed to achieve a minimum level of confidence. The Hoeffding bound is 

used to decide the minimum number of examples required to achieve a specified 

confidence [87]. 

Concepts are the target information that a model is trying to predict. Concept 

change is defined as change of the underlying concept over time. Concept drift represents 

a relatively slow change of the concept, whereas, concept shift represents an abrupt 

change in concept. HT cannot handle concept changes. So, HAT was developed to 

address concept changes in data. HAT is based on a sliding window in which the model 

is kept consistent within the sliding window of a data stream. The nodes store all relevant 

statistics. Every node in the tree has an estimator of frequency statistics. HAT with 

ADWIN uses one instance of ADWIN at each node to monitor the classification error 

rate. ADWIN is a parameter free adaptive size sliding window technique which can be 

used to detect change and trigger model revision [19]. ADWIN as used in the MOA 

setting uses a dynamically adjusted window. The size of the window increases when data 

is non-changing to increase accuracy and shrinks when it detects change. When a change 

is detected, a new alternate subtree is created without splitting the attribute. The average 

error of the original subtree and the average error of the alternate subtree is compared and 

if there is significant improvement with the alternate subtree, the original is replaced by 

the alternate subtree [80] [19]. ADWIN maintains a window that is statistically consistent 

in such a way that the average value inside the window does not change. If two sub-

windows have a distinct average value, the older portion of the window is dropped [82]. 
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DDM was included to address abrupt changes. DDM uses error rate to detect 

concept change and controls the number of errors produced by the model during 

prediction. For each point ′𝑖′ in a sequence,  ′𝑝𝑖′ is the error rate of probability of 

𝑝𝑖(1−𝑝𝑖)misclassification with the standard deviation given by 𝑆𝑖 = √ . For a stationary 
𝑖 

data stream, the error rate of the learning algorithms will decrease when the number of 

instances increases. A significant change in the error rate indicates the change in class 

distribution and, hence, DDM triggers revision of the decision model. DDM compares 

the statistics of two windows: one with all data and another with the data from the 

beginning of the stream until the number of errors increases beyond a threshold. DDM 

works well with abrupt changes and does not perform well with very slow change [86]. 

5.4 Using HAT for real time cyber- power event detection 

Power systems are monitored using various networked sensors which 

continuously measure system status and report measurements to the appropriate control 

center. Intelligent electronic devices (IED) such as PMUs have the ability to continuously 

monitor the power systems in real time with high speed synchronized measurements. 

Additionally, other IEDs, such as relays and meters, continuously send status to the 

control center to provide critical system information to operators and automatic 

controllers. A PMU sends a continuous stream of data which can practically be 

considered an infinite series of data. The velocity of PMU data can be very high, up to 

120 samples per second. The volume of data continuously grows. Power system 

operation goes through both slow changes such as minor load variations and fast changes 

such as faults. Similarly, command injection attacks, response injection attacks, and other 
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cyber-attacks can create abrupt, incremental, gradual, or recurring changes. The changes 

are represented as concept drift and concept shifts in the datasets. One section of data 

plotting a time series of current measurements from a PMU is shown in Figure 5.1 to 

demonstrate slow and abrupt changes in data.  The changes in the current data stream are 

related to faults, breaker opening, reclosing, and load changing events. 

Figure 5.1 Current variation in dataset I 

The heterogeneous datasets obtained from WAMS exhibit the properties of 

evolving data streams. The evolving data stream has three properties: an infinite series of 

data, high velocity, and concept and distribution of data changes over time, hence, past 

information becomes irrelevant and must be forgotten so the model can be updated to 

keep up with the data stream [19]. DDM with HAT as a base learner and with ADWIN is 
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suitable for classifying multiclass and binary class data with concept change in a data 

stream. 

The Massive Online Analysis (MOA) is an open source framework for large scale 

data stream mining in real time. MOA includes collection of machine learning algorithms 

and tools to evaluate performance of algorithms. MOA also provides platform to 

implement new algorithms and provides an experimental framework for benchmarking 

data stream mining algorithms performance [19]. MOA framework implements HAT. 

Figure 5.2 shows the mining process used for this work. The STEM algorithm was used 

for data preprocessing. HAT can work with both numerical and nominal data. For this 

study, the nature of the datasets are heterogeneous, so, data preprocessing was used to 

convert all data to a nominal format. The input data to HAT was in the ARFF format. For 

this work, compressed state data from STEM was used as input to the HAT algorithm. 

Figure 5.2 Implementation of HAT for real time cyber-power events classification 

5.5 Results 

The objective of the experiments presented in this section is to evaluate the ability 

of HAT to classify binary and multiclass datasets. The method was evaluated in terms of 

classification accuracy, Kappa statistic, RAM-Hours usage, and the time to classify each 

instance. 
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5.5.1 Evaluation metrics 

There are multiple evaluation methods available in MOA. The ten-fold cross 

validation method is not suitable for the data stream setting because random parts of data 

streams cannot be separately reserved for training and testing. Hold out and prequential 

evaluation methods are commonly used in the stream mining setting. For this work, a 

prequential method was used.  For prequential evaluation each individual sample is used 

to test the model and then used for training. Hold out is not necessary. The model is 

always being tested on the current example. This method makes maximum use of 

available data. With prequential evaluation, the statistics are updated with every example 

[19]. 

Classification accuracy, the kappa statistic, RAM-hours, and evaluation time were 

used to evaluate the performance of HAT. One RAM-hours is defined as every gigabyte 

of RAM deployed for one hour. 

Cohen et al. introduced the kappa statistic which is suitable for stream 

classification performance evaluation. The accuracy is normalized by chance predictors. 

The kappa statistic is calculated using equation 5.1 [79]. 

𝜌0−𝜌𝑐 𝑘 = (5.1)
1−𝜌𝑐 

The variables 𝜌0 and 𝜌𝑐 are prequential accuracy and chance accuracy. If a 

classifier is always correct then k=1. The chance accuracy is calculated using the 

following equation 5.2, where N is the number of classes and m is the total number of 

instances. 
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𝑁 𝑁 𝐶𝑖𝑗 𝑁 𝐶𝑗𝑖 
𝜌𝑐 = ∑𝑖=1 (∑𝑗=1 ( ) ∑𝑗=1 ( )) (5.2)

𝑚 𝑚 

Power systems operate in normal conditions most of time. A real power system 

dataset would contain nearly all normal operation data. A small fraction of the data would 

contain information associated with events such as faults, outages, and cyber-attacks. If 

we evaluate the performance of an algorithm based only on accuracy, results may appear 

overly optimistic. The kappa statistic addresses this situation and provides a more 

realistic evaluation of the performance of the classifier. 

5.5.2 Datasets for evaluation 

Test data used for this work included dataset 1 and dataset 2 as discussed in 

Chapter 2 of this dissertation. Dataset 1 includes measurements and data logs associated 

with 10,237 simulated cases of the 41 scenarios from Q1-Q41. These scenarios consist of 

single line to ground (SLG) faults at variable locations in 1% increments from 10% to 

90% on transmission line L1 and L2 (Q1-Q6), SLG fault replay attacks on line L1 and L2 

(Q7-Q12), legitimately remotely operating relays to open breakers at both ends of a 

transmission line for line maintenance (Q13-Q14) ,  command injection attacks to illicitly 

operate single relay (Q15-Q18), command injection attacks to illicitly operate two relays 

(Q19-Q20), a single relay disabled during a SLG fault (Q21-Q30), a single relay disabled 

during line maintenance event (Q31-Q34), both relays protecting a line disabled and 

during SLG fault (Q35-Q38), both relays disabled during line maintenance event (Q39-

Q40), and finally normal power system operation (Q41). The load is changed randomly 

from 200-400 MW. 
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The dataset 2 includes measurements and data logs associated with 11,715 

simulated cases of 45 scenarios Q1-Q41 (described above), Q102, Q108, Q114, and 

Q119. The added scenarios include double line (LL) faults on lines L1 and L2 (Q102), 

double line to ground (2LG) faults on lines L1 and L2 (Q108), three phase to ground 

(3LG) faults on lines L1 and L2 (Q114), and repeated command injection attacks to 

rapidly open and close relay R1 called the ‘Aurora attack’ (Q119). 

The raw dataset is in comma separated values (CSV) format with labeled tuples 

that include 44 electrical measurements and log data in each row. The datasets were 

created by merging measurements from four PMUs, four apparent impedance 

calculations, and log information that includes four relay event logs, four control panel 

logs, and four Snort logs. Electrical measurements included phase voltages (Va, Vb, Vc), 

phase current (Ia, Ib, Ic), and frequency from each PMU. The synchrophasor data sample 

rate was 120 samples per second. 

A case of a single scenario includes 2000-3000 tuples in the dataset that 

corresponds to approximately 20 seconds of simulation time. The STEM algorithm was 

applied to preprocess data. Each row of data was quantized, mapped to unique state IDs, 

then compression was performed to obtain the dataset used as input to HAT. Each row of 

the data was labeled with the corresponding scenario label. After STEM preprocessing, 

each scenario contains 30-40 rows (instances) of data. A row of input data contains 44 

quantized attributes and a label. The compressed data contains concept change. WEKA 

was used to convert all data into ARFF format.  
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5.5.3 Experiment 1: Evaluation of performance of HAT using compressed 
dataset for binary classes 

The objective of experiment 1 was to evaluate the HAT algorithm for binary 

classification of cyber-power events. Dataset 1 and Dataset 2 were relabeled with two 

classes of scenarios; “normal” for power system scenarios and “attack” for all cyber-

attack scenarios. Table 5.2 shows which scenarios were added to each of the new classes. 

The total number of instances in dataset 1 and dataset 2 are 316,551 and 426,010 

respectively. Both datasets contains random power system and cyber-attack scenarios and 

have significant concept change. Dataset 2 has added fault scenarios and has more abrupt 

changes. 

Table 5.2 Scenario grouping for binary classification for dataset 1and dataset 2 

Dataset 1 Dataset 2 
Normal Attacks Normal Attacks 

Q1, Q2, Q3, Q4, 
Q5, Q6, Q13, 
Q14, Q41 

Q7, Q8, Q9, Q10, 
Q11, Q12, Q15, Q16, 
Q17, Q18, Q19, Q20, 
Q21, Q22, Q23, Q24, 
Q25, Q26, Q27, Q28, 
Q29, Q30, Q31, Q32, 
Q33, Q34, Q35, Q36, 
Q37, Q38, Q39, Q40 

Q1, Q2, Q3, Q4, Q5, 
Q6, Q13, Q14, Q41, 
Q102, Q108, Q114 

Q7, Q8, Q9, Q10, 
Q11, Q12, Q15, Q16, 
Q17, Q18, Q19, Q20, 
Q21, Q22, Q23, Q24, 
Q25, Q26, Q27, Q28, 
Q29, Q30, Q31, Q32, 
Q33, Q34, Q35, Q36, 
Q37, Q38, Q39, Q40, 
Q119 

HAT was used to classify compressed data. The comparison of classification 

accuracy and kappa statistic between dataset 1 and dataset 2 for binary classification are 

shown in Figure 5.3 and Figure 5.4.  Algorithm performance was comparable for both 

datasets. The average classification accuracy and kappa statistic for both datasets were 

found to be above 95% and 90% respectively. The classification result was updated every 
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10,000 instances. Although, the accuracy shows some valleys, the algorithm recovered 

from the periods of low classification by continuously improving the model. 
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Classification accuracy in percentage for dataset 1 
and dataset 2 vs number of instances 

Classifications correct % dataset 1 

Classifications correct % dataset 2 

Figure 5.3 Classification accuracy (percent) vs. classified instance count for binary 
classification for dataset 1 and dataset 2 

50 

60 

70 

80 

90 

100 

110 

1
0

0
0

0

3
0

0
0

0

5
0

0
0

0

7
0

0
0

0

9
0

0
0

0

1
1

0
0

0
0

1
3

0
0

0
0

1
5

0
0

0
0

1
7

0
0

0
0

1
9

0
0

0
0

2
1

0
0

0
0

2
3

0
0

0
0

2
5

0
0

0
0

2
7

0
0

0
0

2
9

0
0

0
0

3
1

0
0

0
0

3
3

0
0

0
0

3
5

0
0

0
0

3
7

0
0

0
0

3
9

0
0

0
0

4
1

0
0

0
0

4
2

6
0

0
9

 

Kappa statistic in percent for dataset 1 and datase 
2 vs number of instances 

Kappa Statistic % dataset 1 Kappa Statistic % dataset 2 

Figure 5.4 Kappa statistic (percent) vs. classified instance count for binary 
classification for dataset 1 and dataset 2 
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Figure 5.5 shows the number of changes detected by HAT as the datasets were 

processed. The change detection graph shows that the datasets contain significant concept 

changes. Even though the data contains significant changes, the classification accuracy 

remained high throughout the experiment, which signifies the ability of HAT to adapt to 

dynamically changing behavior of power system and attack scenarios. Dahal et al. 

pointed out non adaptive stream mining algorithms failed miserably in classifying such 

dynamic behaviors [34].  The HAT algorithm constantly updates its model whenever it 

detects changes and classifies events based on the updated model. The statistics to decide 

whether to update the old model depend on the Hoeffding bound that depends on the 

number of tuples (instances) available to build or update the model. The algorithm 

performed strongly as binary classification accuracy and the Kappa statistic were very 

high. The average classification accuracy for dataset 1 and dataset 2 was 96.39% and 

97.68%, and the average Kappa statistic was 91.51% and 93.997% respectively. 
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Number of change detected in every 10,000 instance 

Change detected dataset 1 Change detected dataset 2 

Figure 5.5 Number of change detected vs. classified instance count for binary 
classification for dataset 1 and dataset 2 

The model cost can be expressed in RAM-Hours. RAM-Hours are the amount of 

RAM in gigabytes multiplied by duration of the experiment in hours. The RAM-Hours 

metric provides a sense of model size for a finite length of stream. Figure 5.6 presents the 

RAM-Hours metric as the datasets are streamed. The RAM-hours metric was similar for 

both datasets. The maximum RAM-Hours for dataset 1 and dataset 2 was 2.64 × 10−7 

Gigabytes per hour and 2.26 × 10−7 Gigabytes per hour respectively. Figure 5.6 shows 

that the HAT uses very low memory to store the classifier model.  The observed low 

memory use supports the notion that HAT memory use is low enough for use as an EIDS. 
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Model cost (RAM-Hours) vs number of 
instances 

Model cost (RAM-Hours) dataset 1 Model cost (RAM-Hours) dataset 2 

Figure 5.6 Model cost (RAM-Hours) vs. classified instance count for binary 
classification for dataset 1 and dataset 2 

The average evaluation time per instance during the experiment was 36 

microseconds (uS) for dataset 1 and 28 uS for dataset 2 as shown in Figure 5.7. Both 

cases had evaluation times per instance well below the current synchrophasor data rate of 

8.33ms (corresponds to 120 samples per second). The low evaluation time per instance 

makes real time application of HAT as an EIDS possible. 
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Figure 5.7 Evaluation time per instance in millisecond vs. classified instance count for 
binary classification for dataset 1 and dataset 2 

5.5.4 Experiment 2: Evaluation of performance of HAT using compressed dataset 
for multi class 

The objective of this experiment was to evaluate HAT algorithm for multiclass 

classification of cyber-power events. A comparison of performance of HAT using dataset 

1 and dataset 2 is presented. Compressed data obtained from the STEM algorithm was 

provided as input to HAT for this experiment. Dataset 1 contains 41 scenarios labeled as 

Q1 to Q41.The dataset 2 contains 45 scenarios labeled as Q1 to Q45.  The total number 

of instances in dataset 1 and dataset 2 are 316,551 and 426,010 respectively. 
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Figure 5.8 Classification accuracy vs. classified instance count for multiclass 
classification for dataset 1 and dataset 2 

Classification accuracy for the multiclass classification problem is plotted in 

Figure 5.8. In the figure, classification accuracy and the kappa statistic were updated at 

every 10,000 instances. The average classification accuracy for dataset 1 and dataset 2 

was 91.6% and 93.8% respectively. The accuracy decreased for multiclass case as 

compared to binary classification, but, is still high. The Kappa statistic for dataset 1 and 

dataset 2 averaged 90.9% and 93.1% respectively. High values of the Kappa statistic 

signifies that the HAT algorithm performed strongly for multiclass classification. 
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Kappa statistic in percent vs number of instances 

Kappa Statistic % dataset 1 Kappa Statistic % dataset 2 

Figure 5.9 Kappa statistic vs. classified instance count for multiclass classification for 
dataset 1 and dataset 2 

Figure 5.10 shows the number of changes detected in dataset 1 and dataset 2 

every 10,000 tuples. HAT detected more changes in the multiclass case than binary class 

which reflects that the class distribution changes more often than in the binary case.  This 

experiment demonstrated the ability of HAT to detect changes in the data, build the 

classifier model according to available instances, and adapt to the dynamic behavior of 

the power system yielding higher classification accuracy for a broad class of scenarios. 

Although, the classification accuracy contains some dips, classification accuracy always 

improved as the model retrained. 
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Number of change detected 

Change detected dataset 1 Change detected dataset 2 

Figure 5.10 Number of changes detected vs. classified instance count for multiclass 
classification for dataset 1 and dataset 2 

Figure 5.11 presents model cost in terms of the RAM-Hour metric for dataset 1 

and dataset 2. The RAM-Hours metric value for dataset 1 and dataset 2 was 7.76 × 10−7 

Gigabytes per hour and 7.16 × 10−7 Gigabytes per hour respectively. Binary 

classification required less RAM-Hours as compared to multiclass. This result also 

demonstrates that multiclass problems require more resources than binary class problems. 

The RAM-Hours metric for the multiclass case was still very low which is required for 

real time EIDS. 
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Model cos (RAM-Hour) 

Model cost (RAM-Hours) dataset 1 

Model cost (RAM-Hours) dataset 2 

Figure 5.11 Model cost (RAM-Hours) vs. classified instance count for multiclass 
classification for dataset 1 and dataset 2 

Figure 5.12 compares the evaluation time per instance in milliseconds for dataset 

1 and dataset 2. The average evaluation time for dataset 1 and dataset 2 was 0.089 ms and 

0.077 ms. Multiclass classification takes more classification time than the binary 

classification. However, the average evaluation time remains significantly below the 

current synchrophasor data rate which corresponds to 1 sample at every 8.33 ms.  
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Evaluation time per instance in millisecond 

Evaluation time per instance in ms dataset 1 

Evaluation time per instance in ms dataset 2 

Figure 5.12 Evaluation time in millisecond per instances vs. classified instance count 
for multiclass classification for dataset 1 and dataset 2 

5.5.5 Experiment 1 and 2 summary 

Experiment 1 and experiment 2 demonstrate the ability of HAT to adapt to 

changes in streams of data. The datasets contain significant changes including fast 

changing events such as faults and slow changing events such as load changes. The 

classification accuracy and the kappa statistic show HAT adapted well after some 

temporary drops in classification accuracy. HAT performance demonstrates the 

usefulness of HAT for real time cyber-power event classification. 

The binary and multiclass classification accuracy were comparable to the 

accuracy obtained from the traditional batch processing NNGE method presented in 

Chapter 4. This supports the hypothesis that data stream mining with HAT is applicable 

to classify the complex and broad scenarios associated with an EIDS and HAT can 

handle a large amount of data without sacrificing accuracy and computational resources. 
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HAT had better accuracy for binary classification. Binary classification is good 

for identifying legitimate and illegitimate events in a power system. However, binary 

classification insufficient to support automated responses for particular events. Even 

though, multiclass classification had lower accuracy than binary classification, multiclass 

classification should enable automated responses. Hence, multiclass classification is more 

desirable for detecting and classifying cyber-power events in power systems.  

5.5.6 Comparison of HAT with other methods 

The classification performance of HAT was compared with performance of other 

methods found in literature. HAT was compared with to Random Forest, JRip, Adaboost 

plus JRip, common path mining, and NNGE.  Table 5.3 provides classification accuracy 

and the kappa statistic for each algorithm for binary and multiclass classification. The 

performance of HAT is very promising as the classification accuracy and Kappa statistic 

were among the best for all algorithms. The performance of HAT was comparable to 

Adaboost plus JRip, common path mining, and NNGE with STEM. HAT performed well 

for binary and multiclass classification. With low memory usage, small evaluation time, 

high accuracy, and the high Kappa statistic, HAT can be used to classify events and 

enhance situational awareness in the control room. HAT, as compared to other 

algorithms, can handle large datasets. Also, the ability of HAT to work with 

heterogeneous datasets with good performance makes it a favorable candidate for EIDS. 

As opposed to traditional batch processing methods, HAT can create a good model with 

less available data which is a significantly important property that is useful in the case of 

large stream datasets such as heterogeneous synchrophasor data [87].  
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Table 5.3 Comparison of HAT to other algorithms 

Random 
Forest [49] 

JRip [49] Adaboost + 
JRip [49] 

Mining 
Common 
Path [38] 

NNGE (No 
STEM) [49] 

NNGE with 
STEM 

HAT 
dataset 1 

HAT 
dataset 2 

# of classes 2 41 2 41 2 41 2 7 2 41 2 45 2 41 2 45 

Accuracy 75% 70% 90% 75% 95% 90% 95%93% 75% 25% 95% 94% 96% 92% 98% 94% 
Kappa NA NA NA NA NA NA NA NA NA NA 90% 94% 92% 91% 94% 93% 

5.6 Conclusion and discussion 

This chapter presents an evaluation of using HAT as a classifier in a real time 

EIDS. Experiment results show that HAT can be used to address concept drift and 

concept shift in datasets. The EIDS presented in this work achieved more than 96% 

accuracy for binary classification and more than 91% for multiclass classification. HAT 

also achieved very high Kappa statistics, very low RAM-hours, and very small evaluation 

times. A Kappa statistic value greater than 90% signifies that algorithm classification is 

reliable.  HAT achieved excellent accuracy and stayed within memory and evaluation 

time computational boundaries. This shows HAT can be used for data stream mining to 

develop real time EIDS. HAT is suitable for large datasets and does not require large 

memory as opposed to traditional batch processing data mining techniques. The results 

showed HAT was able to classify a broad number of power system and cyber-attack 

scenarios and can be used in multiclass classification to generate automated response. 
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DISCUSSION AND CONCLUSION 

6.1 Conclusion 

The ability of synchrophasor based Wide Area Measurement Systems (WAMS) to 

capture dynamics of power systems enables a paradigm shift in power system monitoring 

and control. WAMS open up many possibilities for real and non-real time applications 

using high speed time stamped data. The abundant data enables data mining algorithms 

related research and application development. However, data availability is a significant 

challenge faced by researchers, especially in universities and research institutes. 

Moreover, the big data produced by WAMS creates challenges in data handling, storage, 

and data transmission. The emergence of high speed data communication between Phasor 

Measurement Units (PMU), Phasor Data Concentrators (PDC), and control centers 

facilitates easy data transportation and provides better user control. However, the 

vulnerabilities in communication networks, protocols, devices, and software make 

WAMS prone to various types of cyber-attacks. 

In this dissertation, a one of kind of WAMS cyber-physical power system test bed 

was developed by integrating a Real Time Digital Simulator (RTDS), physical relays, 

PMUs, PDCs, communication networks, and control and monitoring software. The test 

bed provides a platform to perform security testing and vulnerability assessment of 

various WAMS components and protocols [38] [54].  Moreover, the test bed addresses 
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the data unavailability problem for researchers by creating various datasets with a wide 

variety of scenarios. The unique ability of this test bed to create datasets related to power 

system events and cyber-physical attacks makes the test bed a valuable asset within the 

research community. Two datasets that contains thousands of random cases of power 

system faults, control actions, contingencies, and various cyber-attacks are available for 

researchers. The test bed and dataset products were used by researchers from Mississippi 

State University (MSU) and Oak Ridge National Lab (ORNL) to conduct multiple 

experiments. The test bed and dataset products have been used for power system cyber-

attack impact studies [54], vulnerability assessments of WAMS devices and networks 

[43], data mining research using Synchrophasor data [50] [34], machine learning research 

for power system event detection [49], and intrusion detection system research [38]. 

Finally, the datasets created from the test bed were used in this dissertation to evaluate 

two EIDS using based on the NNGE and HAT data mining algorithms. 

The datasets created by the test bed contain gigabytes of data. This volume of data 

presents a significant challenge when using data mining algorithms for cyber-power 

event detection and classification. The volume of data makes it difficult to apply 

traditional batch processing data mining techniques which require a significant portion 

available data be loaded into memory to build the classifier model. An effective data 

processing method was required to reduce the data size without losing key events and 

patterns in the data. A novel data processing and compression algorithm called STEM 

was developed. STEM merges asynchronous data from multiple sources and compresses 

data into list of system states.  STEM is able to compress data size significantly while 

maintaining key events and patterns in the datasets. Since, STEM maintains labels at each 

156 



www.manaraa.com

 

 

 

 

 

 

 

 

 

 

 

 

 

  

step of the algorithm, output from any step can be used for data mining input. The output 

from STEM depends upon the number of attributes, attribute quantization intervals, and a 

time window used for state extraction. Various experiments were performed to analyze 

the impact of these parameters in Chapter 4. The use of STEM algorithm in support of 

common path mining [38], NNGE, and HAT proves STEM’s importance in data mining. 

Ageing and networked infrastructure are vulnerable to many failures and cyber-

attacks. The advancement of computational abilities within power system infrastructure 

also introduces potential cyber vulnerabilities which can be illicitly exploited by 

attackers. Concise and contextual information on detected events and intrusions delivered 

in timely manner can enable appropriate responses which protect the power grid and 

make it resilient to cyber-attacks and other contingencies. This dissertation presents a 

NNGE data mining algorithm to be used with STEM to create an effective Event and 

Intrusion detection Systems (EIDS).  NNGE uses a hybrid modelling approach that 

combines the concept of a distance function and rule based learning. NNGE uses 

generalized exemplars as rules to classify events. The generalization reduces 

classification time without sacrificing accuracy [68]. The use of STEM with NNGE 

enables better generalization as STEM represents each event with a set of states lists 

which itself is a rule. Hence, the combination of STEM and NNGE creates faster, more 

reliable and accurate EIDS. 

For NNGE with STEM, several experiments were performed to analyze the 

impact of attribute selection, attribute quantization intervals, and the time window used 

with STEM. Second, different experiments were carried out to demonstrate the 

classification performance of NNGE with STEM for the proposed EIDS. The 
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experiments on attribute selection enable the important conclusion that all events may not 

be effectively classified with same set of attributes. The impact of attributes on 

classification was variable for different types of events. Domain expert knowledge is 

required to effectively select appropriate attributes that impact classification of a 

particular event. Similarly, the selection of quantization interval also depends upon the 

types events and requires domain expert knowledge to optimally select intervals for each 

attribute. The STEM time window had very little effect on classification. In this 

dissertation work, a holistic approach was used to decide the appropriate number of 

attributes, quantization intervals, and time window. NNGE has excellent classification 

accuracy for the power system EIDS problem. The multiclass and binary classification 

accuracy of 93% and 96% respectively are the best classification accuracy as compared 

to other algorithms from literature. Other performance indices for NNGE with STEM 

showed that the algorithm is reliable and has very fast testing time which makes NNGE a 

suitable algorithm to create EIDS. These experiments demonstrate the ability of NNGE to 

create rules that can be used to classify binary classes formed from a very wide variety of 

power system and cyber-attack events. The consistency in performance for all type of 

scenarios indicates that NNGE can be used to classify a wide variety of cyber-power 

scenarios. 

An alternative to the traditional batch processing data mining algorithm was also 

explored in this dissertation to address the data storage and the application of EIDS in 

real time. The application of Hoeffding Adaptive Tree (HAT) with DDM and ADWIN 

for cyber-power events classification in power system was studied. HAT is a family of 

decision tree based classifiers which are incremental learners. The ability of HAT to 
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adapt to constantly changing data makes HAT a suitable classifier to deal with the 

dynamic behavior of cyber-physical power systems. Also, the ability of HAT to work 

with data streams makes HAT suitable for real time applications including real time 

EIDS. In this work, output from STEM was used as input data to HAT. Experiments for 

binary and multiclass classification demonstrated HAT adapts to concept change in the 

data very well by updating the classifier model with new data without degrading the 

classification performance. The classification accuracy of 96% and 98% for binary class 

and 92% and 94% for multiclass for two datasets demonstrates consistency in 

performance. Also, the low memory and time required for HAT demonstrates the ability 

of HAT to produce a robust classifier model without exhausting memory while 

maintaining very high classification accuracy.  This ability enables HAT to be used for 

very large volumes of data with a high speed data stream. 

In this research work, NNGE, a traditional batch processing method and HAT, a 

stream mining algorithm were evaluated in terms of their ability to classify cyber-power 

events and their suitability for cyber-power event detection. Even though the research 

objective for both cases was the same, these methods provided various advantages 

individually. 

NNGE demonstrated the ability to classify a broad range of scenarios with high 

accuracy but significant data processing was required to achieve success. NNGE requires 

all data to be present in memory to build the model and does not build and update the 

model in real time. The inability of NNGE to build and update model in real time 

naturally makes NNGE an offline analysis tool. However, since NNGE experiments 

demonstrated the time required to classify an instance is in the order of milliseconds (less 
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the synchrophasor data rate), NNGE can be used in real time applications. First, an 

instance of an NNGE model can be built offline with available data, then the incoming 

data can be converted into states using windowing. These states can be fed into the 

NNGE model to classify sequence of states. Although, the model does not change and 

cannot adapt with evolving scenarios, periodic retraining may solve the issue. Expert 

knowledge can be used to determine the periodicity of retraining the NNGE model. The 

offline classification is useful for post event analysis.  

HAT on the other hand is suitable for the data stream setting where scenarios are 

constantly evolving. HAT is suitable for real time applications as it builds models with 

limited number of incoming data points. HAT addresses memory issues by using an 

incremental learning technique and does not store instances. As data evolves HAT adapts 

to changes by updating its model. Hence offline retraining is not necessary with HAT. 

The classification accuracy, Kappa statistic, and classification time using HAT was 

comparable to performance of traditional batch processing methods. One of the biggest 

challenges of HAT is all supervised learning requires labeling of instances which is not 

available in a real stream setting. Researchers are working on addressing this issue by 

using active learning [89]. 

Table 6.1 summarizes the work performed in this dissertation. 
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Table 6.1 Summary of the dissertation 

Index Contribution Description 
1 Developed a WAMS 

cyber-physical power 
system test bed 

This one of kind test bed provides a 
platform for security testing, vulnerability 
assessment, and datasets for various 
researchers. 

2 Developed datasets 
for power system 
event detection, 
intrusion detection 
and classification 
research 

Datasets created using this test bed were 
used in power system event detection, 
machine learning, and EIDS research.  
Datasets have been used for published 
works from MSU and external researchers.  

3 Developed STEM 
data processing and 
compression 
algorithm 

This novel algorithm to compress WAMS 
heterogeneous data with compression 
ratios up to 4178 to 1.  Compression is 
achieved without losing key events and 
patterns in the data. 

4 Developed an EIDS 
using NNGE with 
STEM 

The NNGE algorithm with STEM is 
suitable to develop an effective EIDS. The 
high classification accuracy, above 92% 
for multiclass and above 95% for binary 
class, high Kappa statistic, high true 
positive rate, low false positive rate less 
than 5%, and very low classification time 
less than current synchrophasor data rate 
fulfill all the EIDS requirements. The use 
of STEM with NNGE demonstrates that a 
NNGE with STEM EIDS can handle big 
data. The training and classification 
processes can be automated which lowers 
EIDS cost as compared to methods where 
rules are created manually [88]. 

5 Developed a real time 
EIDS using HAT 
augmented with 
DDM and ADWIN 

HAT with DDM and ADWIN can be used 
to classify events with constantly changing 
behavior of power grid to create an 
effective real time EIDS.  Experiment 
results include high accuracy, above 92% 
for multiclass and above 95% for 
multiclass, low memory usage, small time 
for classification, and ability to handle the 
big datasets in stream form. 
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6.2 Discussion and future works 

This dissertation enables multiple possible future works. The test bed is able to 

simulate a wide variety of scenarios but still does not include many scenarios such a bus 

faults, switching shunts, and coordinated and more complex attacks. As such, the test bed 

work can be extended to include such scenarios. 

The dissertation demonstrated a novel data processing and compression algorithm 

STEM for large heterogeneous data where the output of STEM depends upon attribute 

selection, attribute quantization intervals, and a time window parameter. Traditional 

methods of attribute selection in data mining do not work with STEM since it transforms 

measurements into state IDs. Several experiments were performed to find optimal 

combinations of attributes. However, a strong conclusion was difficult to make.  This 

dissertation developed an EIDS that works for a 3 bus 2-line system with two zone 

distance protection and made use of 44 measurements. For example, the search for an 

optimal combination of two attributes results in 946 possible outcomes and finding an 

optimal combination using experimental methods is impossible.  A heuristic is needed to 

aid attribute selection when using STEM. Similarly, a larger quantization interval 

performed better than a large number of smaller intervals. Domain expert knowledge was 

found valuable in selecting quantization intervals for chosen attributes.  Additional work 

is needed to develop a heuristic for evaluating attribute quantization intervals. 

The dissertation used a holistic approach to select the attributes, quantization 

intervals, and time window, however, the experiments demonstrated different attributes 

and quantization intervals revealed classification of some scenarios improved with 

particular attributes and quantization intervals, while classification of some scenarios 
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degraded. Rather than using the same attributes and quantization intervals for all 

scenarios, it is better to identify optimal attributes and quantization intervals for a 

particular scenario or set of scenarios. One possible option for the future work to address 

this issue is to divide an EIDS into multiple instances of EIDS, as shows in Figure 6.1, 

that have optimal attributes and intervals for particular scenario or group of scenarios. 

Using this approach, EIDS accuracy can be increased and more a reliable EIDS can be 

developed. 

Figure 6.1 Instances of EIDS for optimal parameter selection and better accuracy 

Additionally, the dissertation made use of only PMU measurements and data logs. 

However, in reality, for large power systems PMU data may not be available for each 

substation. In this case, the inclusion of outputs from state estimation be necessary. 

Future research should be directed to accommodate the output from state estimators and 

other sensors which help to scale the EIDS reach. 

This dissertation also presented two EIDS based on NNGE and HAT for cyber-

physical power systems. However, the EIDS considered only three substations and data 

from four PMUs. In reality, thousands of substations exist. Future work should address 

the scalability of EIDS implementation. The methods used in this dissertation can be 
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scaled to as many protection zones that a relay monitors. The STEM algorithm is scalable 

linearly as it only requires the addition of measurements. But a single EIDS for a large 

number of substations may not be effective due to large memory requirements and more 

processing time which makes EIDS training and classification slower. An ideal case of 

EIDS implementation would be monitoring each substation with one EIDS. However, 

cost may become an issue. If cost is an issue, distributed EIDS can be used for critical 

substation. The distributed EIDS in a hierarchical setting is shown in Figure 6.2.  The 

distributed approach decreases memory requirements, helps reduce EIDS classification 

time, and enables faster training. The distributed EIDS hierarchical arrangement helps 

manage the information generated by EIDS and may enable better responses to events. 

Moreover, the distributed EIDS approach may help to identify the region from where an 

event started. 

Figure 6.2 Hierarchical approach for EIDS scalability 

The criticality of a substation can be defined with index based on size of 

substation, type of load served, impact on critical services and etc.  A number of factors 
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can be used to define critical substations. Future research on finding critical substations is 

needed. 

The presented EIDS were based on supervised learning. One of the challenges in 

supervised learning is availability of labels. For real systems, especially for real time 

operation, label information is not available. Hence, semi-supervised or unsupervised 

options should be researched. 

Finally, in this dissertation, the impact of latency on building EIDS was not 

studied. Additional research is necessary to address the impact of latency on 

classification and implementation of the EIDS in real time. 
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Figure A.1 WAMS implementation of three bus two generator system 
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Table A.2 Scenario list with associated single line diagram and expected relay state 

ID Scenarios Descriptions Relay R1 Relay R2 Relay R3 Relay R4 

R1 R2 R3 R4

BR2 BR3BR1 BR4

G1 G2
L1 L2

LOAD
B1

B2

B3

Note: Each relay has Zone 1 from 10% to 80% and Zone 2 from 80% to 150% of the line. 
Legend: I: Instant Tripping for Zone 1 protection; TD: Time Delayed Tripping for Zone 2 protection; N: Normal; NR: No 

Response. 
Categories marked with * are attacks. Category I and II is a pair. Category III and IV is another pair. Category V are attacks that 

interrupt the relay operations. 
2% scenarios are nothing happen 

Primary protection properly working 20% 
Q1 SLG Fault at 10% - 19% on line L1 I TD N N 
Q2 SLG Fault at 20% - 79% on line L1 I I N N 
Q3 SLG Fault at 80% - 90% on line L1 TD I N N 
Q4 SLG Fault at 10% - 19% on line L2 N N I TD 
Q5 SLG Fault at 20% - 79% on line L2 N N I I 
Q6 SLG Fault at 80% - 90% on line L2 N N TD I 

*SLG Fault replay (This category will be the repeat of category I except there are tripping command detected.) 14% 
Q7 SLG Fault at 10% - 19% on line L1 I TD N N 
Q8 SLG Fault at 20% - 79% on line L1 I I N N 
Q9 SLG Fault at 80% - 90% on line L1 TD I N N 

Q10 SLG Fault at 10% - 19% on line L2 N N I TD 
Q11 SLG Fault at 20% - 79% on line L2 N N I I 
Q12 SLG Fault at 80% - 90% on line L2 N N TD I 

Line maintenance 5% 
III.1 Line maintenance only 

Q13 Line L1 maintenance Trip Trip N N 
Q14 Line L2 maintenance N N Trip Trip 

*Command (CMD) injection against single relay 8% 
Q15 CMD Injection to R1 Trip N N N 
Q16 CMD Injection to R2 N Trip N N 
Q17 CMD Injection to R3 N N Trip N 
Q18 CMD Injection to R4 N N N Trip 

*Command (CMD) injection against two relays 5% 
Q19 CMD Injection to R1 & R2 Trip Trip N N 
Q20 CMD Injection to R3 & R4 N N Trip Trip 

*Primary protection disabled towards single relay 23% 
VI.1 Single relay disabled & SLG Fault 18% 

VI.1.1 R1 disabled & SLG Fault 
Q21 SLG Fault at 10% - 19% on line L1 NR TD N N 
Q22 SLG Fault at 20% - 90% on line L1 NR I N N 

VI.1.2 R2 disabled & SLG Fault 
Q23 SLG Fault at 10% - 49% on line L1 I NR N N 
Q24 SLG Fault at 50% - 79% on line L1 I NR N TD 
Q25 SLG Fault at 80% - 90% on line L1 TD NR N TD 

VI.1.3 R3 disabled & SLG Fault 
Q26 SLG Fault at 10% - 19% on line L2 TD N NR TD 
Q27 SLG Fault at 20% - 49% on line L2 TD N NR I 
Q28 SLG Fault at 50% - 90% on line L2 N N NR I 

VI.1.4 R4 disabled & SLG Fault 
Q29 SLG Fault at 10% - 79% on line L2 N N I NR 
Q30 SLG Fault at 80% - 90% on line L2 N N TD NR 
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Table A.2 (Continued) 

VI.2 Single relay disabled & line maintenance 5% 
VI.2.1 R1 disabled & L1 maintenance 

Q31 L1 Maintenance NR Trip N N 
VI.2.2 R2 disabled & L1 maintenance 

Q32 L1 Maintenance Trip NR N N 
VI.2.3 R3 disabled & L2 maintenance 

Q33 L2 Maintenance N N NR Trip 
VI.2.4 R4 disabled & L2 maintenance 

Q34 L2 Maintenance N N Trip NR 
*Primary protection disabled towards two relays 23% 

VII.1 Two relay disabled & SLG Fault 18% 
VII.1.1 R1 & R2 disabled & SLG Fault 

Q35 SLG Fault at 10% - 49% on line L1 NR NR N N 
Q36 SLG Fault at 50% - 90% on line L1 NR NR N TD 

VII.1.2 R3 & R4 disabled & SLG Fault 
Q37 SLG Fault at 10% - 49% on line L2 TD N NR NR 
Q38 SLG Fault at 50% - 90% on line L2 N N NR NR 

VII.2 Two relay disabled & Line maintenance 5% 
VII.2.1 R1 & R2 disabled & L1 maintenance 

Q39 L1 Maintenance NR NR N N 
VII.2.2 R3 & R4 disabled & L2 maintenance 

Q40 L2 Maintenance N N NR NR 
Q41 No events normal operation 

These are new scenarios 
Primary protection properly working for Line to line faults 28% 

Q102 

LL Fault at 10% - 19% on line L1 I TD N N 
LL Fault at 20% - 79% on line L1 I I N N 
LL Fault at 80% - 90% on line L1 TD I N N 
LL Fault at 10% - 19% on line L2 N N I TD 
LL Fault at 20% - 79% on line L2 N N I I 
LL Fault at 80% - 90% on line L2 N N TD I 

Primary protection properly working for 2 Lines to ground faults 28% 

Q108 

2LG Fault at 10% - 19% on line L1 I TD N N 
2LG Fault at 20% - 79% on line L1 I I N N 
2LG Fault at 80% - 90% on line L1 TD I N N 
2LG Fault at 10% - 19% on line L2 N N I TD 
2LG Fault at 20% - 79% on line L2 N N I I 
2LG Fault at 80% - 90% on line L2 N N TD I 

Primary protection properly working for 3 Lines to ground faults 28% 

Q114 

3LG Fault at 10% - 19% on line L1 I TD N N 
3LG Fault at 20% - 79% on line L1 I I N N 
3LG Fault at 80% - 90% on line L1 TD I N N 
3LG Fault at 10% - 19% on line L2 N N I TD 
3LG Fault at 20% - 79% on line L2 N N I I 
3LG Fault at 80% - 90% on line L2 N N TD I 

Aurora 16% 
Q119 CMD Injection to R1 Trip N N N 
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40

368 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q1

19 261 37 0 0 0 4 3 0 0 0 0 0 0 0 0 0 0 3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q2

0 20 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q3

0 0 0 306 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 Q4

0 0 0 33 271 4 0 0 0 0 13 13 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 Q5

0 0 0 0 5 356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 Q6

0 5 0 0 0 0 202 29 2 0 0 0 3 0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 Q7

0 9 0 0 0 0 52 125 31 0 0 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 Q8

0 0 0 0 0 0 3 13 211 0 0 0 3 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q9

0 0 0 0 1 0 0 0 0 205 15 7 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 Q10

0 0 0 0 12 0 0 0 0 31 105 71 0 6 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 2 2 0 0 Q11

0 0 0 0 14 0 0 0 0 7 43 158 0 8 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 Q12

0 0 0 0 0 0 0 0 0 0 0 0 259 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q13

0 0 0 0 0 0 0 0 0 0 0 0 0 233 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q14

0 0 0 0 0 1 0 0 0 0 0 0 0 0 198 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0 0 Q15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 187 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 Q18

0 0 0 0 0 0 1 0 12 0 0 0 6 0 0 0 0 0 258 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q19

0 0 0 0 1 0 0 0 0 7 22 19 0 9 0 0 0 0 0 204 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q20

0 0 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 174 22 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Q21

0 2 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 21 183 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q22

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q23

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 157 27 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Q24

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 171 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q25

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7 174 19 0 0 0 0 0 0 0 0 0 0 0 0 0 Q26

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 16 164 2 0 0 0 0 0 0 0 0 2 0 0 0 Q27

0 0 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 195 0 0 0 0 0 0 0 0 0 0 0 0 Q28

0 0 0 12 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 152 22 0 0 0 0 0 0 0 1 0 0 Q29

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 204 0 0 0 0 0 0 0 3 0 0 Q30

0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 79 0 0 0 0 0 0 0 0 0 Q31

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 86 0 0 0 0 0 0 0 0 Q32

0 0 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 54 0 0 0 0 0 0 0 Q33

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 Q34

0 0 0 0 0 0 38 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 432 3 0 0 0 0 Q35

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 458 0 0 0 0 Q36

1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 472 1 0 0 Q37

0 0 0 0 0 0 0 0 0 0 19 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 3 413 0 0 Q38

0 0 0 0 0 0 0 0 0 0 0 0 102 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 26 0 0 0 0 0 0 0 127 1 Q39

0 0 0 0 0 2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 247 Q40

Figure B.1 Experiment 1, Case 1 
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Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20 Q21 Q22 Q23 Q24 Q25 Q26 Q27 Q28 Q29 Q30 Q31 Q32 Q33 Q34 Q35 Q36 Q37 Q38 Q39 Q40 Q41

359 16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Q1

23 279 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 Q2

0 30 322 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q3

0 0 0 260 62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 0 0 1 0 0 0 0 Q4

0 0 0 29 295 1 0 1 1 4 8 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Q5

0 0 0 0 1 360 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 1 Q6

0 0 0 0 0 0 222 17 2 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0 0 0 Q7

0 1 0 0 0 0 58 92 67 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 0 Q8

0 0 0 0 0 0 4 58 160 0 0 0 6 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 Q9

0 0 0 0 4 0 0 0 0 144 59 17 0 7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q10

0 0 0 0 4 0 0 0 0 77 82 60 0 5 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 Q11

0 0 0 0 8 0 0 0 0 19 39 163 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 Q12

0 0 0 0 0 0 0 0 0 0 0 0 260 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q13

0 0 0 0 0 0 0 0 0 0 0 2 0 232 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 0 0 0 0 0 0 0 0 0 Q15

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 205 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 194 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q17

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 188 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q18

0 0 0 0 0 0 0 0 3 0 0 0 3 0 0 0 0 0 271 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Q19
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Figure B.2 Experiment 1, Case 2 
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Figure B.3 Experiment 1, Case 3 
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Figure B.4 Experiment 1, Case 4 
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Figure B.5 Experiment 1, Case 5 
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Figure B.9 Experiment 2, Case 5 
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Figure B.10 Experiment 2, Case 6 
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Figure B.11 Experiment 3, Case 1 
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Figure B.12 Experiment 3, Case 2 
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Figure B.13 Experiment 3, Case 4 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 63 0 0 0 0 0 0 0 Q34

0 0 0 0 0 0 8 0 0 0 3 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 466 0 0 0 0 0 0 Q35

0 0 0 0 0 0 0 1 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 4 455 0 0 0 0 0 Q36

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 469 2 0 0 2 Q37

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 1 441 0 0 0 Q38

0 0 0 0 0 0 0 0 0 0 0 0 153 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 102 1 0 Q39

0 0 0 0 0 2 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 248 0 Q40

0 0 0 0 0 0 0 0 0 4 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 208 Q41

Figure B.14 Experiment 3, Case 5 
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